Skip to main content

Biochemische Grundlagen verschiedener Demenzformen

  • Chapter
Parkinson plus
  • 23 Accesses

Zusammenfassung

Unter einer Demenz ist eine globale Störung höherer mentaler Funktionen im intellektuellen, kognitiven und emotionalen Bereich zu verstehen (Mayer-Gross et al. 1969). Damit verbunden sein können u.a. paranoide Symptome, Halluzinationen, Veränderungen der Persönlichkeit, der Affektivität, das Auftreten von Bewußtseinsstörungen und Delirien (Roth 1978; McHugh u. Folstein 1979; Blessed 1980). Aufgrund ätiopathogenetischer Kriterien ist es von großer Bedeutung und auch möglich, eine Klassifikation in primäre und sekundäre Demenzen vorzunehmen. Als sekundäre Demenzen werden solche bezeichnet, die durch extrazerebrale Erkrankungen sowie durch Tumoren, Traumen, Infektionen oder Intoxikationen des Gehirns hervorgerufen werden. Der Begriff Demenz impliziert nicht gleichzeitig auch Irreversibilität. Dementielle Prozesse können durchaus reversibel verlaufen (Weitbrecht 1962, 1963; Huber 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adolfsson R, Gottfries CG, Oreland L, Roos BE, Winblad B (1978) Reduced levels of catecholamines in the brain and increased activity of monamine oxidase in platelets in Alzheimer’s disease: Therapeutic implications. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 441–451

    Google Scholar 

  • Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patient with dementia of Alzheimer type. Br J Psychiatry 135:216–223

    Article  PubMed  CAS  Google Scholar 

  • Bachelard HS (1971a) Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J Neurochem 13:213–222

    Article  Google Scholar 

  • Bachelard HS (1971b) Glucose transport and phosphorylation in the control of carbohydrate metabolism in the brain. In: Brierley JB, Meldrum BS (eds) Brain hypoxia. Heinemann, London, pp 251–260

    Google Scholar 

  • Bachelard HS (1975) How does glucose enter brain cells? In: Ingvar DH, Lassen NA (eds) Brain work. The coupling of function, metabolism and blood flow in the brain. Munksgaard, Copenhagen, pp 126–141

    Google Scholar 

  • Bachelard HS, Daniel PM, Love ER, Pratt OE (1972) The in vivo influx of glucose into the brain of the rat compared with the net cerebral uptake. J Physiol (Lond) 222:149–150 P

    Google Scholar 

  • Bachelard HS, Daniel PM, Love ER, Pratt OE (1973) The transport of glucose into the brain of the rat in vivo. Proe Roy Soc Biol 183:71–82

    Article  CAS  Google Scholar 

  • Benton JS, Bowen DM, Allen SJ, Haan EA, Davison AN, Neary D, Murphy RP, Snowden JS (1982) Alzheimer’s disease as a disorder of isodendritic core. Lancet I:456

    Article  Google Scholar 

  • Bessman SP, Fazekas JF, Bessman AN (1954) Uptake of ammonia by the brain in hepatic coma. Proc Soc Exp Biol Med 85:66–67

    PubMed  CAS  Google Scholar 

  • Bessman SP, Bessman AN (1955) The cerebral and peripheral uptake of ammonia in liver disease with a hypothesis for the mechanism of hepatic coma. J Clin Invest 34:622–628

    Article  PubMed  CAS  Google Scholar 

  • Bessman SP (1961) Ammonia and coma. In: Folch-Pi (ed) Chemical pathology of the nervous system. Pergamon Press, New York, pp 370–376

    Google Scholar 

  • Bianchiporro G, Maiolo AT, Galli C, Polli EE (1969) Brain energy metabolism in hepatic coma. IL Int. Meet Int Soc Neurochem Milano

    Google Scholar 

  • Blessed G (1980) Clinical aspects of senile dementia. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 1–14

    Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–168

    PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P, Flack RHA, Carrasco LH, Gedye JL, Davison AN (1977) Chemical pathology of the organic dementias. IL Quantitative estimation of cellular changes in post-mortem brains. Brain 100:427–453

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, White P, Spillane JA, Goodhardt MJ, Curzon G, Iwangoff P, Meyer-Ruge W, Davison AN (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet I:11–14

    Google Scholar 

  • Celesia GG, Wanamaker WM (1972) Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33:577–583

    PubMed  CAS  Google Scholar 

  • Corsellis JAN (1969) The pathology of dementia. Br J Hosp Med 3:695–703

    Google Scholar 

  • Crone C, Thompson AM (1970) Permeability of brain capillaries. In: Crone C, Lassen NA (eds) Capillary permeability. Munksgaard, Copenhagen, pp 446–455

    Google Scholar 

  • Cross AJ, Crow TJ, Perry EK, Perry RH, Blessed G, Tomlinson BE (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br Med J I:93–94

    Article  Google Scholar 

  • Davies P, Verth AH (1977) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains. Brain Res 138:385–392

    Article  PubMed  CAS  Google Scholar 

  • Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144:325–332

    CAS  Google Scholar 

  • Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wochenschr 41:943–948

    Article  PubMed  CAS  Google Scholar 

  • Gottstein U, Gabriel FH, Held K, Textor T (1977) Continuous monitoring of arterial cerebralvenous glucose concentrations in man. Advantage, procedure and results. In: Blood glucose monitoring. Methodology and clinical application of continuous in vivo glucose analysis. Thieme, Stuttgart, pp 127–135

    Google Scholar 

  • Gottstein U, Müller W, Berghoff W, Gärtner H, Held K (1971) Zur Utilisation von nicht veresterten Fettsäuren und Ketonkörpern im Gehirn des Menschen. Klin Wochenschr 49:406–411

    Article  PubMed  CAS  Google Scholar 

  • Hamer J, Hoyer S, Alberti E, Weinhardt F (1976) Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxemia. Acta Neurochir 33:141–150

    Article  CAS  Google Scholar 

  • Hamer J, Wiedemann K, Berlet H, Weinhardt F, Hoyer S (1978) Cerebral glucose and energy metabolism, cerebral oxygen consumption and blood flow in arterial hypoxemia. Acta Neurochir 44:151–160

    Article  CAS  Google Scholar 

  • Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Papenberg J, Berendes K, Peddinghaus WD (1975) Störungen des Hirnstoffwechsels bei Leberkrankheiten. In: Holm E (Hrsg) Ammoniak und hepatische Enzephalopathie. Biochemie, Elektrophysiologie, Toxikologie. Fischer, Stuttgart, pp 27–32

    Google Scholar 

  • Hoyer S (1978) Blood flow and oxidative metabolism of the brain in different phases of dementia. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 219–226

    Google Scholar 

  • Hoyer S (1980) Factors influencing cerebral blood flow, CMR-oxygen and CMR-glucose in dementia patients. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 252–257

    Google Scholar 

  • Huber G (1972) Klinik und Psychopathologie der organischen Psychosen. In: Kisker KP, Meyer JE, Müller M, Strömgren E (Hrsg) Psychiatrie der Gegenwart, Vol II/2, 2nd edn. Springer, Berlin Heidelberg New York, pp 71–146

    Google Scholar 

  • Kety SS, Polis D, Nadler CS, Schmidt CF (1948 a) The blood flow and oxygen consumption of the human brain in diabetic acidosis and coma. J Clin Invest 27:500–510

    Article  CAS  Google Scholar 

  • Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, Schmidt CF (1948 b) Cerebral blood flow and metabolism in schizophrenia. The effeets of barbiturate semi-narcosis, insulin coma and electroshock. Am J Psychiatry 104:765–770

    PubMed  CAS  Google Scholar 

  • Maiolo AT, Bianchiporro G, Galli C, Sessa M, Polli EE (1971) Brain energy metabolism in hepatic coma. Exp Biol Med 4:52–70

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45:113–119

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Gross W, Slater E, Roth M (1969) Clinical psychiatry, 3rd edn. Bailliere, Tindall, Carssell, London

    Google Scholar 

  • McHugh PR, Folstein MF (1979) Psychopathology of dementia: implications for neuropathology. In: Katzman R (ed) Congenital and acquired cognitive disorders. Raven, New York, pp 17–30

    Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221:1629–1639

    PubMed  CAS  Google Scholar 

  • Oldendorf WH (1976) Blood-brain barrier. In: Himwich HE (ed) Brain metabolism and cerebral disorders. Spectrum, New York, pp 163–180

    Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic Substrates through the blood-brain barrier. J Neurochem 28:5–12

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Bitsch V, Lassen NA (1968) The metabolism of glucose and other metabolites in the brain of patients with cerebral arteriosclerosis and of patients with diabetes mellitus. Acta Neurol Scand 44:183–199

    Article  PubMed  CAS  Google Scholar 

  • Pearce J (1974) Mental changes in Parkinsonism. Br Med J II:445–450

    Article  Google Scholar 

  • Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Perry RH, Gross AJ, Crow TJ (1981) Neuropathological and biochemical observations on the noradrenergic System in Alzheimer’s disease. J Neurol Sci 51:279–287

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN (1981) Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br Med J II: 1588–1590

    Article  Google Scholar 

  • Roth Sir M (1978) Diagnosis of senile and related forms of dementia. In: Katzman R, Terry RD, Bick Kl (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 71–85

    Google Scholar 

  • Ruberg M, Dubois B, Epelbaum J (1983) Biochemical deficiencis in patients with Parkinson’s disease. Weltkongreß Psychiatrie, Wien

    Google Scholar 

  • Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509

    Article  PubMed  CAS  Google Scholar 

  • Sorbi L, Amaducci L, Blass JP, Bird ED (1982) Pyruvate dehydrogenase complex and choline acetyltransferase in aging and dementia. In: Giacobini E, Filogamo G, Giacobini G, Vernadakis A (eds) The aging brain: Cellular and molecular mechanisms of aging in the nervous System, Aging Vol 20. Raven, New York, pp 223–229

    Google Scholar 

  • Tomlinson BE (1980) The structural and quantitative aspects of the dementias. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 15–52

    Google Scholar 

  • Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242

    Article  PubMed  CAS  Google Scholar 

  • Weitbrecht HJ (1962) Zur Frage der Demenz. In: Kranz H (Hrsg) Psychopathologie heute. Thieme, Stuttgart, S 221–223

    Google Scholar 

  • Weitbrecht HJ (1963) Psychiatrie im Grundriß. Springer, Berlin Göttingen Heidelberg, S 243

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, Delong MR (1981) Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Hoyer, S. (1984). Biochemische Grundlagen verschiedener Demenzformen. In: Fischer, PA. (eds) Parkinson plus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69839-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69839-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13566-1

  • Online ISBN: 978-3-642-69839-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics