Skip to main content

Acetylcholine

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

It is generally accepted that transmitters and modulators play a key role in epilepsy and that they are involved in attack initiation, spread, and termination. Thus, the altered synaptic availability of some excitatory and inhibitory messengers could represent an essential bridge between nerve cell physiology and pathology. To date, scientists dealing with epilepsy have focused their attention on the possible role played by the better known putative transmitters, like monoamines, gamma-aminobutyric acid (GABA), and acetylcholine (ACh) (Maynert et al. 1975; Karkzmar 1979). Following the development of new experimental models, such as kindling, the value of ACh in the field of epileptogenesis has recently increased dramatically (Mc Namara et al. 1980; Girgis 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright PS, Burnhan WM, Okazaki M (1979) Effect of atropine sulphate on amygdaloid kindling in the rat. Exp Neurol 66: 409–412

    Article  PubMed  CAS  Google Scholar 

  • Arnold PS, Racine RJ, Wise RA (1973) Effects of atropine, reserpine, 6-hydroxydopamine and handling on seizure development in the rat. Exp Neurol 40: 457–470

    Article  PubMed  CAS  Google Scholar 

  • Aronstom RS, Kellog C, Abood LG (1979) Development of muscarinic cholinergic receptors in inbred strains of mice: identification of receptor heterogeneity and relation of audiogenic seizure susceptibility. Brain Res 162: 231–241

    Article  Google Scholar 

  • Ashton O, Leysen JE, Wanquier A (1980) Neurotransmitter and receptor binding in amygdaloid kindled rats: serotoninergic and noradrenergic modulatory effects. Life Sci 27: 1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes, new knowledge of cortical feedback systems suggests a neurophysio- logical explanation of brief paroxysms. Brain Res 52: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Bakay RAE (1981) Neurotransmitter, receptor and biochemical changes in monkey cortical epileptic foci. Brain Res 206: 387–304

    Article  PubMed  CAS  Google Scholar 

  • Baxter BL (1967) Comparison of the behavioral effects of electrical of chemical stimulation applied at the same brain loci. Exp Neurol 19: 412–432

    Article  PubMed  CAS  Google Scholar 

  • Beani L, Bianchi C, Megazzini P, Ballotti L, Bernardi G (1969) Drug-induced changes in free, labile and stabile acetylcholine of guinea-pig brain. Biochem Pharmacol 18: 1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Beleslin D, Polak RL, Sproull DH (1965) The effect of leptazol and strychnine on the acetylcholine release fron the cat brain. J Physiol (Lond) 181: 308–316

    CAS  Google Scholar 

  • Bianchi C, Beani L, Bertelli A (1975) Effect of some antiepileptic drugs on brain acetylcholine. Neuropharmacology 14: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356

    PubMed  CAS  Google Scholar 

  • Burchfield J, Dunchowny M, Duffly F (1979) Neuronal supersensitivity to acetylcholine induced by kindling in the rat hippocampus. Science 204: 1096–1098

    Article  Google Scholar 

  • Byrne MC, Gottlieb R, McNamara JO (1980) Amygdala kindling induces muscarinic cholinergic receptors declines in a highly specific distribution within the limbic system. Exp Neurol 69: 85–98

    Article  PubMed  CAS  Google Scholar 

  • Cain DP (1981) Pentylenetetrazol sensitization facilitates subsequent amygdaloid kindling in the rat. Soc Neurosci 587 (abstract)

    Google Scholar 

  • Cain DP (1982) Transfer between electrical kindling of the amygdala and intracerebral carbachol or pentylenetetrazol. Soc Neurosci 24. 6 (abstract)

    Google Scholar 

  • Celesia CG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurobiology 16: 1053–1067

    CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1968) Studies of drug effects on electrically-induced extensor seizures and clinical implications. Arch Int Pharmacodyn Ther 172: 183–218

    PubMed  CAS  Google Scholar 

  • Collier B, Mitchell JF (1967) The central release of acetylcholine during consciousness and after brain lesions. J Physiol (Lond) 188: 83–98

    CAS  Google Scholar 

  • Collins RC (1978) Kindling of neuroanatomic pathways during recurrent focal penicillin seizures. Brain Res 150: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Cornblath DP, Ferguson JH (1976) Distribution of radioactivity from topically applied [3H] acetylcholine in relation to seizure. Exp Neurol 50: 495–504

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Ladinsky H, Peri G, Garattini S (1972) Effect of central stimulants on mouse brain acetylcholine and choline levels. Eur J Pharmacol 18: 251–255

    Article  PubMed  CAS  Google Scholar 

  • Crill WE (1980) Neuronal mechanisms of seizures initiation. Adv Neurol 27: 169–183

    PubMed  CAS  Google Scholar 

  • Dasheiff RM, McNamara JO (1980) Evidence for the agonist independent down regulation of hippocampal muscarinic receptors in kindling. Brain Res. 195: 345–354

    Article  PubMed  CAS  Google Scholar 

  • Dasheiff RM, Byrne MC, Patrone V, McNamara JO (1981) Biochemical evidence of decreased muscarinic cholinergic neuronal communication following amygdala-kindled seizures. Brain Res 206: 233–238

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Gjerstad L (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol (Lond) 305: 297–313

    CAS  Google Scholar 

  • Dudar JD (1975) The effect of septal nuclei stimulation on the release of acetycholine from the rabbit hippocampus. Brain Res 83: 123–134

    Article  CAS  Google Scholar 

  • Dudar JD, Szerb JC (1969) The effect of topically applied atropine on resting and evoked cortical acetylcholine release. J Physiol (Lond) 203: 741–762

    CAS  Google Scholar 

  • Ebel A, Ayad G, Simmer S, Stefanovic V, Collins R, Mandel P (1975) Activity of cholinergic system enzymes in the cochlea of mice sensitized for audiogenic seizure. Life Sci 17: 641–644

    Article  PubMed  CAS  Google Scholar 

  • Echlin FA (1975) Time course of development of supersensitivity to topical acetylcholine in partially isolated cortex. Electroencephalogr Clin Neurophysiol 38: 225–233

    Article  PubMed  CAS  Google Scholar 

  • Elliot KAC, Swank RL, Henderson N (1950) Effects of anaesthetics and convulsivant on acetylcholine content of brain. Am J Physiol 162: 469–474

    Google Scholar 

  • Emson PC, Joseph NH (1975) Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res 93: 91–110

    Article  PubMed  CAS  Google Scholar 

  • Fariello R (1976) Forebrain influence on an amygdaloid acute focus in the cat. Exp Neurol 51: 515–528

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JH, Cornblath DR (1975) Acetylcholine epilepsy: relationship of surface concen-tration, chronicity of denervation and focus size. Exp Neurol 46: 302–314

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JH, Jasper HH (1971) Laminal DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol 30: 377–390

    Article  PubMed  CAS  Google Scholar 

  • Fishman MC, Nelson PG (1981) Depolarization-induced synaptic plasticity at cholinergic synapses in tissue culture. J Neuroscience 1: 1043–1051

    CAS  Google Scholar 

  • Fitz JG, McNamara JO (1979) Muscarinic cholinergic regulation of epileptic spiking in kindling. Brain Res 62: 497–507

    Google Scholar 

  • Fujiwara M (1980) Acetylcholine levels of mouse brain in preconvulsive states. Neuroscience 6: 192–202

    CAS  Google Scholar 

  • Gardner CR, Webster RA (1977) Convulsivant-anticonvulsivant interactions on seizure activity and cortical acetylcholine release. Eur J Pharmacol 42: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Giarman NJ, Pepeu G (1962) Drug induced changes in brain acetylcholine. Br J Pharmacol 19: 226–234

    CAS  Google Scholar 

  • Girgis M (1981) Kindling as a model for limbic epilepsy. Neuroscience 6: 1695–1706

    Article  PubMed  CAS  Google Scholar 

  • Goddard GV (1980) Kindling model in limbic epilepsy. In: Girgis M, Kiloh (eds) Limbic epilepsy and the dyscontrol syndrome. Elsevier North Holland, Biomedical Press, Amsterdam, pp 108–116

    Google Scholar 

  • Goldberg AM, Pollock J J, Hartman ER, Craig CR (1972) Alterations in cholinergic enzymes during the development of cobalt induced epilepsy in the rat. Neuropharmacology 11: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Goodman JH, Lebovitz RM (1982) Modulation of penicillin-induced interictal spikes by cholinergic agents and medial septal lesions. Soc Neurosci 24. 4 (abstract)

    Google Scholar 

  • Greer CA, Alpern HP (1977) Mediation of myoclonic seizures by acetylcholine and GABA. Life Sci 21: 285–392

    Article  Google Scholar 

  • Grossman SP (1983) Chemically induced epileptiform seizures in the cat. Science 142:409- 411

    Google Scholar 

  • Guberman A, Gloor P (1974) Cholinergic drug studies of generalized penicillin epilepsy in the cat. Brain Res 78: 203–222

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Figueroa R, De Babbian Vester F, Barros A, Heat RG (1964) Cholinergic mechanisms in subcortical mirror focus and effects of gamma-aminobutyric acid and acetylcholine. Epilepsia 5: 140–155

    Article  PubMed  CAS  Google Scholar 

  • Hemsworth BA, Neal MJ (1968) The effect of central stimulant drugs on acetylcholine release from rat cerebral cortex. Br J Pharmacol 34: 543–550

    PubMed  CAS  Google Scholar 

  • Herken H, Neubert D (1953) Der Acetylcholin Gehalt des Gehirns bei verschiedenen Funktionszustanden. Naunyn Schmiedeberg’s Arch Exp Pharmacol 219: 223–233

    CAS  Google Scholar 

  • Hoover DB, Craig CR, Colasanti BK (1977) Cholinergic involvement in cobalt induced epilepsy in the rat. Exp Brain Res 29: 501–513

    Article  PubMed  CAS  Google Scholar 

  • Johnson DD, Davis HL, Crawford RD (1979) Pharmacological and biochemical studies in epileptic fowl. Fed Proc 38: 2417–2423

    PubMed  CAS  Google Scholar 

  • Kalichman MW, Mclntyre DC, Burnhan W (1980) Locomotor and convulsive responses to picrotoxin in amygdala-kindled rats. Exp Neurol 70: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Karczmar AG (1967) Pharmacologic and therapeutic properties of anticholinesterases. In: Root WS, Hofman FG (eds) Physiological pharmacology. Academic, New York, pp 163–322

    Google Scholar 

  • Karczmar AG (1976) Central actions of acetylcholine, cholinomimetics and related drugs. In: Goldberg AM, Hanin I (eds) Biology of cholinergic function. Raven, New York, pp 395–449

    Google Scholar 

  • Karczmar AG (1979) Acetylcholine and animal electrophysiology. In: Davis KL, Berger PA (eds) Brain acetylcholine and neuropsychiatric disease. Plenum, New York, pp 265–310

    Chapter  Google Scholar 

  • Kilbey MM, Ellinwood EH, Easier ME (1979) The effect of chronic cocaine pretreatment on kindled seizures and behavioral stereotypes. Exp Neurol 64: 306–314

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Kambo Y, Wadi J A (1981) Catecholamine and cholinergic system and amygdaloid kindling. In: Wada (ed) Kindling, 2nd edn. Raven, New York, pp 265–284

    Google Scholar 

  • Krnjevic K, Ropert N (1981) Cholinergic nature of septohippocampal modulation of pyramidal cell firing. Soc Neurosci 831 (abstract)

    Google Scholar 

  • Krnjevic K, Reiffenstein RI, Silver A (1970) Chemical sensitivity of neurons in long-isolated slabs of cat cerebral cortex. Electroencephalogr Clin Neurophysiol 29: 269–282

    Article  PubMed  CAS  Google Scholar 

  • Kurokava M, Machiyama Y, Kato M (1963) Distribution of acetylcholine in the brain during various states of activity. J Neurochem 10: 341–348

    Article  Google Scholar 

  • Lai H, Manu PA, Sherman GT, Lippa AS (1981) Effect of acute and chronic pentylenetetrazol treatment on benzodiazepine and cholinergic receptor binding in rat brain. Eur J Pharmacol 75: 115–119

    Article  Google Scholar 

  • Maynert EW, Marczynsky TJ, Browing RA (1975) The role of the neurotransmitters in the epilepsies. Adv Neurol 13: 79–147

    PubMed  CAS  Google Scholar 

  • McNamara JO (1978) Muscarinic cholinergic receptors participate in the kindling model of epilepsy. Brain Res 154: 415–420

    Article  PubMed  CAS  Google Scholar 

  • McNamara JO, Byrne MC, Dasheiff RM, Fitz JG (1980) The kindling model of epilepsy: a review. Progr Neurobiol 15: 139–159

    Article  CAS  Google Scholar 

  • Messenheimer J, Harris E, Steward ON (1979) Sprouted fibers gain access to circuitry transsynaptically altered by kindling. Exp Neurol 64: 469–481

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JF (1963) The spontaneous and evoked release of acetylcholine from the cerebral cortex. J Physiol (Lond) 165: 98–116

    CAS  Google Scholar 

  • Mucha RF, Pinel JPS (1977) Post-seizure inhibition of kindled seizures. Exp Neurol 54: 266–282

    Article  PubMed  CAS  Google Scholar 

  • Naruse H, Kato M, Kurokava M, Haba R, Yabe T (1960) Metabolic defects in a convulsive strain of mouse. J Neurochem 5: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Vemura S, McGeer EG, Wada J A (1981) Lasting influence of amygdaloid kindling on cholinergic neurotransmission. Soc Neurosci 585 (abstract)

    Google Scholar 

  • Pappius HM, Elliot KAC (1958) Acetylcholine metabolism in normal and epileptogenic brain tissue: failure to repeat previous findings. J Appl Physiol 12: 319–323

    PubMed  CAS  Google Scholar 

  • Pedata F, Mulas A, Marconcini-Pepeu I, Pepeu G (1976) Changes in regional brain ACh levels during drug-induced convulsion. Eur J Pharmacol 40: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Penry JK, Porter RJ (1979) Epilepsy - mechanisms and therapy. Med Clin North Am 63: 802–812

    Google Scholar 

  • Pepeu G (1974) The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms. Prog Neurobiol 2: 257–288

    Google Scholar 

  • Phillis JW, York DH (1968) Pharmacological studies on a cholinergic inhibition in the cerebral cortex. Brain Res 10: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Pumain R, Louvel J, Chanvel P (1977) Chemical sensitivity of neurons in chronic epileptogenic foci. Electroencephalogr Clin Neurophysiol 44: E426

    Google Scholar 

  • Purpura DP, Penry JK, Tower, D, Woodburg DM, Walter R (1972) Experimental models of epilepsy. Raven, New York

    Google Scholar 

  • Racine R, Gartner J, Burnham W (1971) Epileptiform activity and neural plasticity in limbic structures. Brain Res 47: 262–268

    Article  Google Scholar 

  • Rapport RL, Harris AB, Friel PN, Ojemann GA (1975) Human epileptic brain. Arch Neurol 32: 549–554

    PubMed  Google Scholar 

  • Richter D, Crossland J (1949) Variations in acetylcholine content in the brain with the physiological state. Am J Physiol 159: 247–255

    PubMed  CAS  Google Scholar 

  • Saelens JK, Schuman J (1974) Effect of multiple electroshock on acetylcholine ( ACh) metabolism in mouse brain. Fed Proc 33: 477

    Google Scholar 

  • Savage DD, McNamara JO (1981) In vitro autoradiographic localization of muscarinic cholinergic binding sites in rat hippocampal formation: effects of amygdala kindling. Soc Neurosci 592 (abstract)

    Google Scholar 

  • Shavit Y, Caldecott-Hazard S, Liebeskin JC (1981) Anticonvulsant effects of electrocon-vulsive shock (ECS) on subsequent kindled seizure in rats. Soc Neurosci 579 (abstract)

    Google Scholar 

  • Shenoy AK (1981) Choline acetyltransferase and glutamic acid decarboxylase activities in audiogenic seizure susceptible (frings) mouse brain. Fed Proc 40: 271

    Google Scholar 

  • Simon JR, Atwch S, Kuhar MJ (1976) Sodium dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26: 909–922

    Article  PubMed  CAS  Google Scholar 

  • Smythies JR, Adey WK (1970) Brain mechanisms and behavior. Academic, New York

    Google Scholar 

  • Spehlman R (1971) Acetylcholine and the epileptiform activity of chronically isolated cortex. II. Microelectrode studies. Arch Neurol 24: 495–502

    Google Scholar 

  • Spehlman R, Daniels JC, Chang CM (1971) Acetylcholine and the epileptiform activity of chronically isolated cortex. I. Macroelectrode studies. Arch Neurol 24: 401–408

    Google Scholar 

  • Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol (Lond) 225: 485–499

    CAS  Google Scholar 

  • Tower DB, Elliot KAC (1952) Activity of acetylcholine system in human epileptogenic focus. J Appl Physiol 4: 669–676

    PubMed  CAS  Google Scholar 

  • Tuff LP, Racine R, Mishra R (1981) Long-lasting alterations in inhibitory processes in kindled rats. Soc Neurosci 584 (abstract)

    Google Scholar 

  • Vasquez AJ, Krip G (1973) Evidence for an inhibitory role for acetylcholine, catecholamines and serotonin on the cerebral cortex. In: Sabelli HC (ed) Chemical modulation of brain function. Raven, New York

    Google Scholar 

  • Vosu H, Wiser RA (1975) Cholinergic seizure in the rat: comparison of caudate, amygdala and hippocampus. Behav Biol 13: 491–495

    Article  PubMed  CAS  Google Scholar 

  • Ward AA Jr (1969) The epileptic neuron: chronic foci in animals and man. In: Jasper HH, Ward AA (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 329–348

    Google Scholar 

  • Wasterlain CG, Jonec V, Folm SJ (1978) Cholinergic receptors. Neurology 28: 346

    Google Scholar 

  • Williams D (1941) The effect of choline like substances on the cerebral electrical discharges in epilepsy. J Neurol Neurosurg Psychiatr 4: 32–43

    Article  CAS  Google Scholar 

  • Wolff VH (1956) Die Behandlung zerebraler Anfalle mit Scopolamin: Ein Beitrag zur Klinik des „synkopalen“ Syndroms. Dtsch Med Wochenschr 81: 1358–1360

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bianchi, C., Beani, L. (1985). Acetylcholine. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics