Skip to main content

Bioavailability and Uptake of Xenobiotics in Fish

  • Chapter
Chemicals in the Aquatic Environment

Part of the book series: Springer Series on Environmental Management ((SSEM))

Summary

The bioavailability of chlorinated and brominated phenols, guaiacols and veratroles, hexachlorobenzene and benz(a)pyrene to fish has been evaluated from direct measurements of absorption rates across the gill epithelium. Two hypotheses were tested: (1) the bioavailability of organic xenobiotics is related to their partition coefficient in octanol/water (Pow), and (2) the absorption rate of ionizable compounds is pH-dependent and directly proportional to the concentration of the non-ionized form (pH-partition hypothesis).

A positive correlation between the Pow value and the absorption rate was observed for substances with log Pow ranging from 1 to 4. However, no correlation was apparent above log Pow 4 and even a tendency to reduced rates was observed for the compounds with the highest Pow values (hexachlorobenzene and benz(a)pyrene). It is concluded that the partition coefficient has a limited value as a predictor of the bioavailability of the compounds studied, particularly for those with log Pow values above 4.

The absorption rates of ionizable compounds were pH-dependent. Observed rates at a pH above the pKa of the substances were higher than expected on basis of the pH-partition hypothesis. This indicates that the ionized form contributed to the absorption rates. So the pH-partition hypothesis is too simple to be used in predictions of the bioavailability of ionizable compounds at pH higher than the pKa. It will lead to underestimations of actual absorption rates.

Neither salinity nor hardness had effects on the penetration rates of the compounds tested. The only water quality parameter affecting the absorption rate was turbidity (suspended charcoal particles). Compounds bound to particles were apparently not available for absorption through the gills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger O (1984) Bioaccumulation of super-lipophilic chemicals in fish. Toxicol Environ Chem 7:173–189

    Article  CAS  Google Scholar 

  • Cameron JN, Davis JC (1970) Gas exchange in rainbow trout (Salmo gairdneri) with varying blood oxygen capacity. J Fish Res Bd Can 27:1069–1085

    Article  CAS  Google Scholar 

  • Collander R, Bärlund H (1933) Permeabilitätstudien an Chara ceratophylla. Acta Bot Fenn 11: 1–114.

    Google Scholar 

  • Davies RP, Dobbs AJ (1984) The prediction of bioconcentration in fish. Water Res 18(10):1253–1262

    Article  CAS  Google Scholar 

  • Diamond JM, Katz Y (1974) Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membrane Biol 17:121–154

    Article  CAS  Google Scholar 

  • Diamond JM, Wright EM (1969) Biological membranes: The physical basis of ion and non-electrolyte selectivity. Annu Rev Physiol 31: 581–546

    Article  PubMed  CAS  Google Scholar 

  • Esser HO, Moser P (1982) An appraisal of problems related to the measurement and evaluation of bioaccumulation. Ecotoxicol Environ Saf 6: 131–148

    Article  CAS  Google Scholar 

  • Flynn GL, Yalkowski SH (1972) Correlation and prediction of mass transport across membranes I: Influence of alkyl chain length on flux-determining properties of barrrier and dif- fusant. J Pharm Sci 61: 838–851

    Article  PubMed  CAS  Google Scholar 

  • Geyer H, Politzki G, Freitag D (1984) Prediction of ekotoxicological behavior of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere 13(2): 269–284

    Article  CAS  Google Scholar 

  • Gobas FAPC, Opperhuizen A, Hutzinger O (1986) Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation. Environ Toxicol Chem 5: 637–646

    Article  CAS  Google Scholar 

  • Goodman DS (1958) The interaction of human serum albumin with long-chain fatty acid anions. J Am Chem Soc 80: 3892–3898

    Article  CAS  Google Scholar 

  • Hawker D, Connell D (1985) Relationships between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bioaccumulation. Chemosphere 9: 1205–1219

    Article  Google Scholar 

  • Hogben CAM, Tocco DJ, Brodie BB, Schanker LS (1959) On the mechanism of intestinal absorption of drugs. J Pharmacol Exp Ther 125: 275–282

    PubMed  CAS  Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Hoar WS, DJ Randall (eds) Fish physiology, vol 10 a. Academic Press, New York, London, pp 1–72

    Google Scholar 

  • Hughes GM, Horimoto M, Kikuchi Y, Kakiuchi Y, Koyama T (1981) Blood flow velocity in microvessels of the gill filaments of the goldfish (Carassius uratus). J Exp Biol 90: 327–331

    Google Scholar 

  • Isaia J (1984) Water and nonelectrolyte permeation. In: Hoar WS, DJ Randall (eds) Fish physiology, vol 10b, Academic Press, New York London, pp 1–38

    Google Scholar 

  • Jackson M, Cohn VH (1977) Determinants of xenobiotic transport at biological barriers. In: Geiger SR (ed) Handbook of physiology 9: reactions to environmental agents. Am Physiol Soc, pp 397–418

    Google Scholar 

  • Johansen K (1982) Gills: Respiratory gas exchange of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Cambridge Univ Press, pp 99–128

    Google Scholar 

  • Jollow DJ, Brodie BB (1972) Mechanisms of drug absorption and drug solution. Pharmacology 8: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Kihlström I (1982) Placental transfer of xenobiotics and of an amino acid in xenobiotic pre-treated guinea-pigs, studied by means of an improved placental perfusion technique. Acta Pharmacol Toxicol 50: 300–304

    Article  Google Scholar 

  • Lloyd R, Herbert DVM (1961) The influence of carbon dioxide on the toxicity of unionized ammonia to the rainbow trout (Salmo gairdneri Rich.), Ann Appl Biol 48: 399–404

    Article  Google Scholar 

  • Matsuo M (1979) The i/o-characters to describe ecological magnification of some organophosphorous insecticides in fish. Chemosphere 7: 477–485

    Article  Google Scholar 

  • Matsuo M (1980) The i/o-characters to correlate bio-accumulation of some chlorobenzenes in guppies with their chemical structures. Chemosphere 9: 409–413

    Article  CAS  Google Scholar 

  • McKim JM, Goeden H (1982) A direct measure of the uptake efficiency of a xenobiotic chemical across the gills of brook trout (Salvelinus fontinalis) under normoxic and hypoxic conditions. Comp Biochem Physiol 72C: 65–74

    CAS  Google Scholar 

  • McKim JM, Heath EM (1983) Dose determinations for waterborne 2,5,2’,5’-[14C]tetrachloro- biphenyl and related pharmacokinetics in two species of trout (Salmo gairdneri and Salveli- nus fontinalis): a mass-balance approach. Toxicol Appl Pharmacol 68:177–187

    Article  PubMed  CAS  Google Scholar 

  • McKim JM, Schmeider P, Veith G (1985) Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient. Toxicol Appl Pharmacol 77:1–10

    Article  PubMed  CAS  Google Scholar 

  • Neely WB (1979) Estimating rate constants for the uptake and clearance of chemicals by fish. Environ Sei Technol 13(12): 1506–1510

    Article  CAS  Google Scholar 

  • Norstroem RJ, McKinnon AE, deFreitas SW (1976) A bioenergetics-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa river yellow perch (Perca flavescens). J Fish Res Bd Can 33: 248–267

    Article  Google Scholar 

  • Opperhuizen A, v. d. Velde EW, Gobas FAPC, Liem PAK, v. d. Steen JMD (1985) Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896

    Article  CAS  Google Scholar 

  • Overton E (1899) Über die allgemein osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahresschr Naturforsch Ges Zürich 44: 88–406

    Google Scholar 

  • Perrier H, Perrier C, Peres G, (1977) The perchlorosoluble proteins of the serum of the rainbow trout (Salmo gairdneri Richardson): albumin like and hemoglobin binding fraction. J Gras Comp Biochem Physiol 57B: 325–327

    Article  Google Scholar 

  • Perry SF, Davie PS, Daxboeck C, Ellis AG, Smith DG (1984) Perfusion methods for the study of gill physiology. In: Hoar WS, DJ Randall (eds) Fish physiology, vol 10b Academic Press, New York London, pp 325–388

    Google Scholar 

  • Piiper J, Scheid P (1984) Model analysis of gas transfer in fish gills. In: Hoar WS, DJ Randall (eds) Fish physiology, vol 10a. Academic Press, New York London, pp.229–262

    Google Scholar 

  • Pärt P, Tuurala H, Soivio A (1982) Oxygen transfer, gill resistance and structural changes in rainbow trout (Salmo gairdneri) gills perfused with vasoactive agents. Comp Biochem Physiol 71C: 7–13

    Google Scholar 

  • Pärt P, Svanberg O, Kiessling A (1989) The availability of cadmium to perfused rainbow trout gills in different water qualities. Water Res 19(4): 427–434

    Article  Google Scholar 

  • Pärt P, Saarikoski J, Tuurala H, Havaste K (1989) Factors affecting the uptake of lipophilic compounds across perfused rainbow trout gills: methodological aspects, (submitted)

    Google Scholar 

  • Rodgers DW, Beamish FWH (1981) Uptake of waterborne methylmercury by rainbow trout (Salmo gairdneri) in relation to oxygen consumption and methylmercury concentration. Can J Fish Aquat Sci 38(11): 1309–1315

    Article  CAS  Google Scholar 

  • Saarikoski J, Lindström R, Tyynelä M, Viluksela M (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy(Poecilia reticulate). Ecotoxicol Environ Saf 11: 158–173

    Article  PubMed  CAS  Google Scholar 

  • Sardet C, Pisam M, Maetz J (1979) The surface epithelium of Teleostean fish gills. Cellular and junctional adaptations of chloride cell in relation to salt adaptation. J Cell Biol 80: 96–117

    Article  PubMed  CAS  Google Scholar 

  • Shaw GR, Connell GW (1984) Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environ Sci Technol 18(1): 18–23

    Article  CAS  Google Scholar 

  • Skalsky HL, Guthrie FE (1978) Binding of insecticides to human serum proteins. Toxicol Appl Pharmacol 43: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Spacie A, Hamelink JL (1982) Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1: 309–320

    Article  CAS  Google Scholar 

  • Svensson A, Holmer E, Andersson L-O (1974) A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin. Biochim Biophys Acta 342: 54–59

    Google Scholar 

  • Tulp M Th M, Haya K, Zitko V, Hutzinger O (1979) Effect of salinity on uptake of 14C- 2,2’,4,5,5’-pentachlorobiphenyl by juvenile atlantic salmon. Chemosphere 8(4): 343–349

    Article  Google Scholar 

  • van Gestel CAM, Otermann K, Canton JH (1985) Relation between water, octanol/water partition coefficients, and bioconcentration of organic chemicals in fish: A review. Regul Toxicol Pharmacol 5: 422–431

    Article  Google Scholar 

  • Wartiowaara V, Collander R (1960) Permeabilitatstheorien. Protoplasmologica 2 C8D: 1–98

    Google Scholar 

  • Wright EM, Diamond JM (1969) An electrical method of measuring non-electrolyte permeability. Proc R Soc London Ser B 172: 203–271

    Article  CAS  Google Scholar 

  • Wright EM, Pietras RJ (1974) Routes of nonelectrolyte permeation across epithelial membranes. J Membrane Biol 17: 293–312

    Article  CAS  Google Scholar 

  • Wright P, Heming T, Randall D (1986) Downstream pH changes in water flowing over the gills of rainbow trout. J Exp Biol 126: 499–512

    Google Scholar 

  • Yalkowski SH, Morozowich W (1980) A physical chemical basis for the design of orally active prodrugs. In: Aliens EJ (ed) Drug design 9. Academic Press, New York London, pp 122–185

    Google Scholar 

  • Zitko V, Hutzinger O (1976) Uptake of chloro- and bromobiphenyls, hexachloro- and hexa- bromobenzene by fish. Bull Environ Contamin Toxicol 16: 655–673

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pärt, P. (1989). Bioavailability and Uptake of Xenobiotics in Fish. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics