Skip to main content

A Tentative Hazard Assessment of Hexachlorobenzene in the Aquatic Environment

  • Chapter
Chemicals in the Aquatic Environment

Part of the book series: Springer Series on Environmental Management ((SSEM))

  • 215 Accesses

Summary

Hexachlorobenzene (HCB) is today known as an environmental pollutant of ubiquitous occurrence. Its physical properties favor its global distribution and its accumulation in sediments and biota. Its chemical properties result in only slow abiotic and biotic degradation. HCB was earlier used in some industrial connections but above all as a fungicide. However, after a severe disaster in Turkey in the 1950’s - delayed outbreak of liver porphyria in persons eating HCB-treated seed grains - most applications gradually ceased. Since the input into the environment continues, other sources must exist and these are discussed in the present survey.

The analysis of HCB presents some problems and methods to overcome these are briefly mentioned. Analysis of samples of air, water, sediment and fish point to a fairly even distribution within the western hemisphere; industrialized areas may show increased levels.

Among the persistent xenobiotics HCB displays extreme physical properties, the influence of which on uptake and bioconcentration in aquatic organisms is briefly discussed. The lack of detailed investigations covering the metabolism of HCB in e. g., fish has rendered necessary a brief account of its far better known biotransformation in rats and mice. This is initially very slow but the rate increases gradually during a chronic exposure, possibly reflecting the pronounced enzyme-inducing properties of HCB. Apart from the main metabolite - pentachlorophenol - numerous other products containing oxygen or sulfur have been identified. Mechanistic studies have revealed a route directly from HCB to sulfur-containing conjugates via microsomally bound glutathione S-transferases. It is today well established that oxidative transformation of HCB via a P-450-dependent MFO-system is a prerequisite for outbreak of porphyria e.g., in the rat. However, experiments using carbon-14-labeled compounds indicate that HCB-metabolites as such are not directly involved in the porphyria-induction process. These results are supported by tests where pentachlorobenzene - forming the same phenolic metabolites as HCB - is reported not to induce porphyria in the rat. Alternative mechanisms involving, e. g., oxygen radicals are now being discussed.

The acute toxicity of HCB to aquatic organisms as studied in laboratory experiments is low. Effects, if observed, occur at levels far above those found in the environment. It is, however, noteworthy that long-term tests comparable to those on rats and mice have apparently not been performed. Exposure of a protozoan to HCB is reported to give disturbed porphyrin metabolism. Field studies indicate similar effects in pike exposed to HCB, PCB and DDT. An acceptable advanced hazard assessment of HCB would require extended tests to comprise potential porphyrinogenic capacity of HCB and also effects on reproduction capacity. To permit comparison with fish caught in the field it is essential that laboratory exposure is expressed as content in fish, preferably on a lipid base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernethy S, Bobra AM, Shiu WY, Wells PG, Mackay D (1986) Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: The key role of organism-water partitioning. Aquat Toxicol 8:163–174

    Article  CAS  Google Scholar 

  • Åkermark B, Backström P, Eklund-Westlin U, Göthe R, Wachtmeister CA (1976) Photochemical dechlorination of 1,2,4-trichlorobenzene. Acta Chem Scand B30: 49–52

    Article  Google Scholar 

  • Alleman MA, Koster JF, Wilson JM, Edixhoven-Bosdijk A, Slee RG, Kroos MJ, Eijk HG van (1985) The involvement of iron and lipid peroxidation in the pathogenesis of HCB induced porphyria. Biochem Pharmacol 34:101–116

    Article  Google Scholar 

  • Anderson RS, Giam CS, Ray LE, Tripp MR (1981) Effects of environmental pollutants on immunological competency of the clam Mercenaria mercenaria: Impaired bacterial clearance. Aquat Toxicol 1:187–195

    Article  CAS  Google Scholar 

  • Bakke JE (1986) Catabolism of glutathione conjugates. In: Paulson GD, Caldwell J, Hudson DH, Menn JJ (eds) Xenobiotic conjugation chemistry. ACS Symp Ser 299. Am Chem Soc, Washington D C, pp 301–321

    Chapter  Google Scholar 

  • Ballschmiter K, Zell M (1980) Baseline studies of the global pollution I. Occurrence of organo- halogens in pristine European and Antarctic aquatic environment. Intern J Environ Anal Chem 8:15–35

    Article  CAS  Google Scholar 

  • Ballschmiter K, Niemczyk R, Schäfer W, Zoller W (1987) Isomer-specific identification of polychlorinated benzenes and biphenyls in effluents of municipal waste incineration. Fresenius Z Anal Chem 328: 583–587

    Article  CAS  Google Scholar 

  • Bidleman T (1984) Estimation of vapor pressures for nonpolar organic compounds by capillary gas chromatography. Anal Chem 56: 2490–2496

    Article  PubMed  CAS  Google Scholar 

  • Bidleman T, Wideqvist U, Jansson B, Söderlund R (1987) Organochlorine pesticides and polychlorinated biphenyls in the atmosphere of southern Sweden. Atmos Environ 21: 641–654

    Article  CAS  Google Scholar 

  • Bjerk JE, Brevik EM (1980) Organochlorine compounds in aquatic environments. Arch Environ Contam Toxicol 9: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Blackwood TR, Sipes TG (1979) Status assessment of toxic chemicals. US Environ Prot Ag EPA-600/2–79-210g: 1–20

    Google Scholar 

  • Bleavins MR, Aulerich RJ, Ringer R (1983) Hexachlorobenzene induced effects on the lymphocyte blastogenic response to concanavalin in the mink. Environ Toxicol Chem 2: 411–416

    Article  CAS  Google Scholar 

  • Bøckman OC (1981) HCB og andere halogenerte organiske forbindelser 17. Nordiske Symposium om Vattenforskning. Nordforsk Miljövårdsser 1981:1:119–130 (In Norwegian)

    Google Scholar 

  • Brandt J, Bergman A (1987) PCB methyl sulphones and related compounds: Identification of target cells and tissues in different species. Chemosphere 16:1671–1676

    Article  CAS  Google Scholar 

  • Brevik EM (1981) Organochlorine residues in fish from Lake Mjøsa in Norway. Bull Environ Contam Toxicol 26: 679–680

    Article  PubMed  CAS  Google Scholar 

  • Bro-Rasmussen F (1986) Hexachlorobenzene: An ecotoxicological profile of an organochlorine compound. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 231–242

    Google Scholar 

  • Calamari D, Galassi S, Setti F, Vighi M (1983) Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12: 253–262

    Article  CAS  Google Scholar 

  • Caron G, Suffet IH, Belton T (1985) Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds. Chemosphere 14: 993–1000.

    Article  CAS  Google Scholar 

  • Choudhry GG, Huzinger O (1984) Acetone-sensitized and nonsensitized photolyses of tetra-, penta- and hexachlorobenzenes in acetonitrile-water mixtures. Environ Sci Technol 18: 235–241

    Article  CAS  Google Scholar 

  • Courtney KD (1979) Hexachlorobenzene - a review. Environ Res 20: 225–266

    Article  PubMed  CAS  Google Scholar 

  • Debets FMH, Hamers WJHMB, Strik JJTWA (1980) Metabolism as a prerequisite for the porphyrinogenic action of polyhalogenated aromatics, with special reference to hexachlorobenzene and polybrominated biphenyls (Firemaster BP-6). Int J Biochem 12: 1019- 1025

    Article  PubMed  CAS  Google Scholar 

  • Debets FMH, Reinders JH, Debets AJM, Lössbrock TG, Strik JJTWA, Koss G (1981) Biotransformation and porphyrinogenic action of hexachlorobenzene and its metabolites in a primary liver cell culture. Toxicology 19:185–196

    Article  PubMed  CAS  Google Scholar 

  • De Matteis F (1986) Experimental hepatic porphyria caused by hexachlorobenzene: Mechanism of the metabolic block. In: Morris CR, Cabral JPR (eds) Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 427–431

    Google Scholar 

  • Doucette WY, Andren AW (1988) Estimation of octanol/water partition coefficients: Evaluation of six methods for highly hydrophobic aromatic hydrocarbons. Chemosphere 17: 345–359

    Article  CAS  Google Scholar 

  • Ekelund R, Granmo Å, Berggren M, Renberg L, Wahlberg C (1987) Influence of suspended solids on bioavailability of hexachlorobenzene and lindane to the deposit-feeding bivalve Abra nitida (Müller). Bull Environ Contam Toxicol 38: 500–508

    Article  PubMed  CAS  Google Scholar 

  • Ernst W (1986) Hexachlorobenzene in the Marine Environment: Distribution, fate and ecotoxicological aspects. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 211–222

    Google Scholar 

  • Falandysz J (1982) Chlorinated hydrocarbons in salmon netted in Gdansk Bay, Baltic Sea (Poland). Meeresforschung 29: 219–224

    CAS  Google Scholar 

  • Fowler SW, Villeneuve JP, Burns, KA (1986) Vertical flux of hexachlorobenzene in coastal waters of the North-west Mediterranean Sea. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 67–73

    Google Scholar 

  • Geike F, Parasher, CD (1976 a) Effect of hexachlorobenzene (HCB) on growth of Tetrahy- mena pyriformis . Bull Environ Contam Toxicol 16: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Geike F, Parasher CD (1976b) Effect of hexachlorobenzene on some growth parameters of Chlorella pyrenoidosa. Bull Environ Contam Toxicol 15: 670–677

    Article  PubMed  CAS  Google Scholar 

  • Gluth G, Hanke W (1984) A comparison of physiological changes in carp,Cyprinus carpio induced by several pollutants at sublethal concentration - II. The dependency on the temperature. Comp Biochem Physiol 79C: 39–45

    CAS  Google Scholar 

  • Goldstein JA, Friesen M, Scotti TM, Hickman P, Hass JR, Bergman H (1978) Assessment of the contribution of chlorinated dibenzo-p-dioxins and dibenzofurans to HCB-induced toxicity, porphyria, changes in mixed function oxygenases and histopathological changes. Toxicol Appl Pharmacol 46: 633–649

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JA, Linko P, Hahn ME, Gasiewicz TA, Yeowell HN (1986) Structure-activity relationships of chlorinated benzenes as inducers of hepatic cytochrome P-450 isozymes in the rat. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 519–526

    Google Scholar 

  • Hawker DW, Connell DW (1985) Relationships between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bioaccumulation. Chemo- sphere 14:1205–1219

    CAS  Google Scholar 

  • Heinish E (1978) Biogeochemische Kreisläufe persistenter organisher Verbindungen, dargestellt am Hexachlorbenzol. Sitzungsber Akad Wiss DDR 20N: 3–67

    Google Scholar 

  • IARC (1979) Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Int Ag Res Cancer, Lyon 20:155–177

    Google Scholar 

  • Ingebrigtsen K, Skaare SU (1983) Distribution and elimination of 14C-hexachlorobenzene after single oral exposure in the rainbow trout (Salmo gairdneri). J Toxicol Environ Health 12: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Ingebrigtsen K, Solbakken JE (1985) Distribution and elimination of 14C-hexachlorobenzene after single oral exposure in cod (Gadus morhua) and flounder (Platichthys flesus). J Toxicol Environ Health 16:197–205

    Article  PubMed  CAS  Google Scholar 

  • Jensen S, Johnels A G, Olsson M, Otterlind G (1972) DDT and PCB in herring and cod from the Baltic, the Kattegatt and the Skagerak. Ambio Spec Rep No 1: 71–85

    CAS  Google Scholar 

  • Jensen S, Renberg L, Reutergårdh (1977) Residue analysis of sediment a nd sewage sludge for organochlorines in the presence of elemental sulfur. Anal Chem 49: 77–79

    Article  Google Scholar 

  • Jensen S, Reutergårdh L, Jansson B (1983) Analytical methods for measuring organochlorines and methyl mercury by gas chromatography. FAO/SIDA Manual of methods in aquatic environment research. Part 9. Analysis of metals and organochlorines in fish. FAO Fish Tech Pap 212: 21–33

    Google Scholar 

  • Johnsen RE, Munsell Y (1977) Facile elimination of sulfur interference in pesticide analysis by gas chromatography. Bull Environ Contam Toxicol 17: 573–576

    Article  PubMed  CAS  Google Scholar 

  • Kobayanski H (1982) Microbiological removal of hazardous organic compounds. Environ Sci Technol 16:170A-183A

    Article  Google Scholar 

  • Koss G, Koransky W (1978) Pentachlorophenol in different species of vertebrates after administration of hexachlorobenzene and pentachlorobenzene. In: Ranga Rao K (ed) Pentachlorophenol. Plenum, New York, London, pp 131–137

    Google Scholar 

  • Koss G, Seubert S, Seubert A, Koransky W, Ippen H (1978) Studies on the toxicology of hexachlorobenzene III Observations in a long-term experiment. Arch Toxicol 40: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Koss G, Schüler E, Arndt B, Seidel Y, Seubert S, Seubert A (1986) A comparative toxicologi- cal study on pike (Esox lucius L) from the river Rhine and river Lahn. Aquat Toxicol 8:1–9

    Article  CAS  Google Scholar 

  • Krämer W, Ballschmiter K (1988) Global baseline pollution studies XII. Content and pattern of polychloro-cyclohexanes (HCH) and -biphenyls (PCB), and content of hexachlorobenzene in the water column of the Atlantic Ocean. Fresenius Z Anal Chem 330: 524–526

    Article  Google Scholar 

  • Krämer W, Buchert H, Reuter V, Biscoito M, Maul DG, Le Grand G, Ballschmiter K (1984) Global Baseline Pollution Studies IX C6-C14 organochlorine compounds in surface-water and deep-sea fish from the eastern North Atlantic. Chemosphere 13:1255–1267

    Article  Google Scholar 

  • Laake M (1978) En sammenligning av dyrkingsmetoder for alger ved forsök med heksaklor-bensen. Fjortonde nordiska symp om vattenforskning. Ålborg, Denmark 25–27 April 1978, Nordforsk Miljövårdssekr Publ 1978: 2, pp 179–190 (In Norwegian)

    Google Scholar 

  • Laake M (1981) Heksaklorbensen - en okotoxikologisk vurdering. Sjutconde nordiska symp. om vattenforskning. Porsgrunn, Norway 4–7 maj 1981. Nordforsk Miljövårdssekr Publ 1981:1, pp 233–262 (In Norwegian)

    Google Scholar 

  • Linder R, Scotti T, Goldstein J, McElroy K, Walsh D (1980) Acute and subchronic toxicity of pentachlorobenzene. J Environ Pathol Toxicol 4:183–196

    PubMed  CAS  Google Scholar 

  • Lund BO, Bergman Å, Brandt I (1988) Metabolic activation and toxicity of a DDT-metabolite, 3-methylsulphonyl-DDE, in the adrenal zona fasciculata in mice. Chem Biol Interact 65: 25–40

    Article  PubMed  CAS  Google Scholar 

  • MacLeod KE, Hanish R, Lewis R (1982) Evaluation of gel permeation chromatography for GC/MS analysis of pesticides and other chemicals. J Anal Toxicol 6: 38–40

    PubMed  CAS  Google Scholar 

  • McKim J, Schneider P, Veith G (1985) Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient. Toxicol Appl Pharmacol 77:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mehendale HM, Fields M, Matthews HB (1975) Metabolism and effects of hexachlorobenzene on hepatic microsomes in the rat. J Agric Food Chem 23: 261–265

    Article  PubMed  CAS  Google Scholar 

  • Metealf RL, Kapoor JP, Lu PY, Schuth CK, Sherman P (1973) Model ecosystems studies of the environmental fate of six organochlorine pesticides. Environ Health Perspect 4: 27-34

    Article  Google Scholar 

  • Miller MM, Waslk SP, Huang GL, Shiu WY, Mackay D (1985) Relationships between octa- nol- water partition coefficient and aqueous solubility. Environ Sci Technol 19: 522–529

    Article  CAS  Google Scholar 

  • Morgenstern R, DePierre JW (1985) Microsomal glutathione S-transferase. In: Hodgson E, Bend JR, Philpot RM (eds) Reviews in biochemical toxicology, vol 7. Elsevier, Amsterdam, New York, pp 67–104

    Google Scholar 

  • Morita M (1977) Chlorinated benzenes in the environment. Ecotoxicol Environ Safety 1:1–6

    Article  PubMed  CAS  Google Scholar 

  • Müller MD (1982) Hexachlorbenzol in der Schweiz - Ausmass und Hintergründe der Umweltkontamination. Chimia 36: 437–445

    Google Scholar 

  • Niimi AJ (1983) Biological and toxicological effects of environmental contaminants in fish and their eggs. Can J Fish Aquat Sci 40: 306–312

    Article  CAS  Google Scholar 

  • Nijhuis H, Heeschen W (1986) Hexachlorobenzene contamination of milk and human samples. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. I ARC Sci Publ No 77, Lyon, pp 133–137

    Google Scholar 

  • Norén K (1988) Changes in the levels of organochlorine pesticides, polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans in human milk from Stockholm, 1972–1985. Chemo- sphere 17: 39–48

    Google Scholar 

  • Oliver BG, Charlton MN (1984) Chlorinated organic contaminants on settling particulates in the Niagara River vicinity of Lake Ontario. Environ Sci Technol 18: 903–908

    Article  CAS  Google Scholar 

  • Oliver BG, Nicol KD (1982) Chlorobenzenes in sediments, water and selected fish from Lakes Superior, Huron, Erie and Ontario. Environ Sci Technol 16: 532–536

    Article  CAS  Google Scholar 

  • Olsson M, Jensen S (1975) Pike as the Test Organism for Mercury, DDT and PCB Pollution. A Study of the contamination in the Stockholm archipelago. Inst Freshwater Res, Drott- ningholm, Sweden, Rep No 54: 83–106

    Google Scholar 

  • Ommen van B, Bladeren PJ van, Temmink JHM, Müller F (1985) Formation of pentachloro- phenol as the major product of microsomal oxidation of hexachlorobenzene. Biochem Bio- phys Res Commun 126: 25–32

    Article  Google Scholar 

  • Ommen van B, Adang AEP, Brader L, Posthumus MA, Müller F, Bladeren PJ van (1986 a) The microsomal metabolism of hexachlorobenzene - origin of the covalent binding to protein. Biochem Pharmacol 35: 3233–3238

    Article  PubMed  Google Scholar 

  • Ommen van B, Adang AEP, Müller F, Bladeren PJ van (1986 b) The microsomal metabolism of pentachlorophenol and its covalent binding to protein and DNA. Chem Biol Interact 60: 1–11

    Article  PubMed  Google Scholar 

  • Ommen van B, Bladeren PJ van, Adang AEP, Bessems JGM, Koeman JH (1987) Biotransformation of 14C-hexachlorobenzene and its major oxidative metabolites by primary cultures of chick embryo hepatocytes. In: Ommen B van. Thesis, Dep Toxicol, Agric Univ, Wageningen, The Netherlands, pp 107–119

    Google Scholar 

  • Ommen van B, Voncken JW, Müller F, Bladeren PJ van (1988) The oxidation of tetrachloro- 1,4-hydroquinone by microsomes and purified cytochrome P-450b. Implications for covalent binding to protein and involvement of reactive oxygen species. Chem Biol Interact 65: 247–259

    Article  PubMed  Google Scholar 

  • Opperhuizen A, Velde EW v d, Gobas FAPC, Liem PAK, Steen JMD v d (1985) Relation between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemo- sphere 14:1871–1896

    CAS  Google Scholar 

  • Perttila M, Tervo V, Parmanne R (1982) Age dependence of the concentration of harmful substances in Baltic herring Clupea harengus . Chemosphere 11: 1019–1026

    Article  CAS  Google Scholar 

  • Phelps DK, Pruell RS, Lake J (1986) Hexachlorobenzene in selected marine samples: an environmental perspective. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 121–130

    Google Scholar 

  • Quinlivan SC, Ghassemi M, Leshendok TV (1975/77) Sources, characteristics and treatment and disposal of industrial wastes containing hexachlorobenzene. J Hazardous Materials 1:343–359

    Article  Google Scholar 

  • Renner G (1981) Biotransformation of the fungicides hexachlorobenzene and pentachloroni- trobenzene. Xenobiotica 11: 436–446

    Article  Google Scholar 

  • Renner G, Nguyen PT (1984) Mechanism of the reductive denitration of pentachloronitroben- zene and the reductive dechlorination of hexachlorobenzene. Xenobiotica 14: 705–710

    Article  PubMed  CAS  Google Scholar 

  • Reutergårdh L (1988) Identification and distribution of chlorinated organic pollutants in the environment. Natl Swed Environ Protect Board, Solna Rep 3465: 29–30

    Google Scholar 

  • Reutergårdh L, Knap AH (1987) Overview of organochlorine compound analysis in marine mammals. Int Counc Explor Sea Mar Mam 7.2.2

    Google Scholar 

  • Rippen G, Frank R (1986) Estimation of hexachlorobenzene pathways from the technosphere into the environment. In: Morris CR, Cabral JPR (eds) Hexahlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 45–52

    Google Scholar 

  • Sanborn, JR, Childers WF, Hansen LG (1977) Uptake and elimination of [14C]-hexachloro- benzene (HCB) by the green sunfish, Lepomis cyanellus Raf., after feeding contaminated food. J Agric Food Chem 25: 551–553

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H, Scheel D, Trenck TH v d (1984) Use of plant cell cultures to study the metabolism of environmental chemicals. Ecotoxicol Environ Safety 8:167–182

    Article  PubMed  CAS  Google Scholar 

  • Scheunert J, Marra C, Viswanathan R, Klein W, Korte F (1983) Fate of hexachlorobenzene- 14C in wheat plants and soil under outdoor conditions. Chemosphere 12: 843–858

    Article  CAS  Google Scholar 

  • Södergren A, Larsson P (1982) Transport of PCBs in aquatic laboratory model ecosystems from sediment to the atmosphere via the surface microlayer. Ambio 11: 41–45

    Google Scholar 

  • Steinwandter H (1982) Contribution to the application of gel chromatography in the residue analysis. Fresenius Z Anal Chemie 313: 536–538

    Article  CAS  Google Scholar 

  • Stewart FP, Smith AG (1986) Metabolism of the mixed cytochrome P-450 inducer hexachlorobenzene by rat liver microsomes. Biochem Pharmacol 35: 2163–2170

    Article  PubMed  CAS  Google Scholar 

  • Suntio LR, Shiu WY, Mackay D (1988) A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17:1249–1290

    Article  CAS  Google Scholar 

  • Sweeney GD, Basford D, Krestynski F (1986) The role pf contaminants in hexachlorobenzene toxicity. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 363–370

    Google Scholar 

  • Takazawa RS, Strobel HW (1986) Cytochrome P-450 mediated reductive dehalogenation of hexachlorobenzene. Biochemistry 25: 4804–4809

    Article  PubMed  CAS  Google Scholar 

  • Testaferri I, Tingoli M, Tiecco N (1980) Reactions of polychlorobenzenes with alkane thiol anions in HMPA. A simple high yield synthesis of poly(alkylthio)benzenes. J Org Chem 45: 4376–4380

    Article  CAS  Google Scholar 

  • Tobin P (1986) Known and potential sources of hexachlorobenzene. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 3–12

    Google Scholar 

  • Uhnák J, Veningerovä M, Madaric A (1986) Dynamics of hexachlorobenzene residues in the food chain. In: Morris CR, Cabral JPR (eds) Hexachlorobenzene. Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 109–113

    Google Scholar 

  • Uyeta M, Tave S, Chikusawa K, Mazaki M (1976) Photoformation of poly chlorinated biphe- nyls from chlorinated benzenes. Nature (London) 264: 583–585

    Article  CAS  Google Scholar 

  • Weast RC (1977) Handbook of chemistry and physics, 58th edn. CRC, Cleveland

    Google Scholar 

  • Wittlinger R, Ballschmiter K (1987) Global Baseline Pollution Studies XI: Congener specific determination of polychlorinated biphenyls (PCB) and occurrence of alpha- and gamma- hexachlorocyclohexane (HCH), 4,4’-DDE and 4,4’-DDT in continental air. Chemosphere 16: 2497–2513

    Article  CAS  Google Scholar 

  • Yesair, DW, Feder PJ, Chin E, Naber SJ, Kuiper-Goodman T, Siegel Scott C, Robinson PE (1986) Development, evaluation and use of a pharmacokinetic model for hexachlorobenzene. In: Morris CR, Cabral JPR (eds) Proc Int Symp. IARC Sci Publ No 77, Lyon, pp 297–318

    Google Scholar 

  • Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Photochemistry of natural waters. Environ Sci Technol 18: 358A-371A

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wachtmeister, C.A., Ekelund, R. (1989). A Tentative Hazard Assessment of Hexachlorobenzene in the Aquatic Environment. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics