Skip to main content

Advanced Hazard Assessment of 4,5,6-Trichloroguaiacol in the Swedish Environment

  • Chapter
Chemicals in the Aquatic Environment

Summary

A brief account is given of the occurrence and properties of chlorinated guaiacols and catechols formed during production of bleached pulp. Estimates are made of the quantities discharged into the aquatic environment, and a detailed environmental analysis presented of 4,5,6-trichloroguaiacol and related compounds. The biotransformation of these compounds is discussed with emphasis on reactions in the aquatic phase, the occurrence of these compounds and their conjugates in biota, and their binding and microbial transformation in the sediment phase. Particular attention has been directed to the role and significance of environmental factors. Procedures for the synthesis, analysis and identification of the compounds discussed are presented. Biological factors regulating exposure are discussed in detail, and include: (i) biotransformation by bacteria, (ii) uptake through fish gills and bioavailability, (iii) salient aspects of bioaccumulation and biomagnification in algae, invertebrates and fish, and (iv) metabolic transformations in fish. Environmental effects are discussed at three levels: the single-species, the community and the systemic. The discussion evaluates effects on algae, the Fucus habitat, the sediment habitat, and on fish. A budget for the mesocosm experiments is presented, and a tentative hazard assessment made. The data presented demonstrate the shortcomings of traditional procedures, and the plethora of significant factors which have emerged from the study. It is demonstrated, for example, that evaluations which neglect the role of metabolic transformations, of transport mechanisms into aquatic organisms, the complexity of distribution among the several compartments of the ecosystem, and sub-acute and secondary biological effects may lead to seriously erroneous conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard A-S, Remberger M, Neilson AH (1985) Bacterial O-methylation of chloroguaicols: effect of substrate concentration, cell density, and growth conditions. Appl Environ Microbiol 49: 279–288

    CAS  Google Scholar 

  • Allard A-S, Remberger M, Neilson A H (1987) Bacterial O-methylation of halogen- substituted phenols. Appl Environ Microbiol 53: 839–845.

    PubMed  CAS  Google Scholar 

  • Allard A-S, Remberger M, Viktor T, Neilson AH (1988) Environmental fate of chloroguaiacols and chlorocatecols. Water Sci Technol 20 (2): 131–141

    CAS  Google Scholar 

  • Atlas E, Sullivan K, Giam CS (1986) Widespread occurrence of polyhalogenated aromatic ethers in the marine atmosphere. Atmos Environ 20:1217–1220

    Article  CAS  Google Scholar 

  • Bernhardt F-H, Nastainczyk W, Seydewitz V (1977) Kinetic studies on a 4-methoxybenzoate O-demethylase from Pseudomonas putida Eur J Biochem 72:107–115

    Article  PubMed  CAS  Google Scholar 

  • Bidleman TF, Renberg L (1985) Determination of vapour pressures for chloroguaiacols, chloroveratroles, and nonylphenol by gas chromatography. Chemosphere 14:1475–1481

    Article  CAS  Google Scholar 

  • Blanck H (1985) A simple, community level, ecotoxicological test system using samples of periphyton. Hydrobiologia 124: 251–261

    Article  Google Scholar 

  • Blanek H, Egnéus H (1983) Effects of long-chained aliphatic amines on photosynthetic reactions in isolated spinach chloroplasts. Physiol Plant 59:120–126.

    Article  Google Scholar 

  • Blanck H, Wängberg S-Å (1988) The validity of an ecotoxicological test system. Short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can J Fish Aquat Sci 45: 1807–1815

    Article  Google Scholar 

  • Blanck H, Wängberg S-Å, Molander S (1988) Pollution-induced community tolerance - a new ecotoxicological tool. In: Cairns J, Jr, Pratt JP (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM STP 988, Am Soc Test Mat, Philadelphia, pp 219–230

    Chapter  Google Scholar 

  • Bollag J-M, Loll MJ (1983) Incorporation of xenobiotics into soil humus. Experientia 39: 1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Carlberg G, Johnsen S, Landmark L H, Bengtsson B-E, Bergström B, Skramstad J, Storflor H (1988) Investigations of chlorinated thiophenes: a group of bioaccumulable compounds identified in the effluents from kraft bleaching. Water Sci Technol 20(2): 37–48

    CAS  Google Scholar 

  • Edgerton T, Moseman R, Under R, Wright L (1978) Multi-residue method for the determination of chlorinated phenol metabolites in urine. J Chromatogr 170: 331–342

    Article  Google Scholar 

  • Förlin L, Andersson T, Wachtmeister CA (1989) Hepatic microsomal 4,5,6-trichloroguaiacol glucuronidation in five species of fish. Comp Biochem Physiol (in press)

    Google Scholar 

  • Häggblom M, Apajalahti J, Salkinoja-Salonen M (1986) Metabolism of chloroguaiacols by Rhodococcus chlorophenolicus Appl Microbiol Biotechnol 24: 397–404

    Article  Google Scholar 

  • Häggblom M, Apajalahti J, Salkinoja-Salonen MS (1988) Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl Environ Microbiol 54: 683–687

    PubMed  Google Scholar 

  • Hermann M, Popoff M-R, Sebald M (1987) Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Syst Bacteriol 37: 93–101

    Article  CAS  Google Scholar 

  • Higuchi T (1980) Lignin structure and morphological distribution in plant cell walls. In: KirkTK, Higuchi T, Chang H (eds) Lignin biodégradation: microbiology, chemistry and potential applications, vol I. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Jensen S, Renberg L, Reutergârdh L (1977) Residue analysis of sediment and sewage sludge for organochlorines in the presence of elementary sulphur. Anal Chem 49: 316

    Article  PubMed  CAS  Google Scholar 

  • Knuutinen J, Korhonen IOO (1983) Mass spectra of chlorinated aromatics formed in pulp bleaching. 1-Chlorinated catechols. Org Mass Spectrom 18: 438–441

    Article  CAS  Google Scholar 

  • Knuutinen J, Korhonen IOO (1984) Mass spectra of chlorinated aromatics formed in pulp bleaching. 2-Chlorinated guaiacols. Org Mass Spectrom 19: 96–100

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II Interpretation of fluorescence signals. Photosynth Res 5:139–157

    Article  CAS  Google Scholar 

  • Kringstad KP, Lindström K (1984) Spent liquors from pulp bleaching. Environ Sci Technol 18: 236A-248A

    Article  CAS  Google Scholar 

  • Krumholz WR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143: 313–318

    Google Scholar 

  • Kuivasniemi K, Eloranta V, Knuutinen J (1985) Acute toxicity of some chlorinated phenolic compounds to Selenastrum capricornutum and phytoplankton. Arch Environ Contam Toxicol 14: 43–49

    Article  CAS  Google Scholar 

  • Kukkonen J, Oikari A (1987) Can planktonic animals, like Daphnia magna, biotransform xenobiotics? Acta Univ Ouluensis Ser D Media No 157

    Google Scholar 

  • Landner L (1982) Systems for testing and hazard evaluation of chemicals in the aquatic environment. A background paper and program outline as a basis for the research plan in preparation. SNV PM 1631, Solna

    Google Scholar 

  • Landner L, Neilson A H, Sörensen L, Tàrnholm A, Viktor T (1985) Short-term test for predicting the potential of xenobiotics to impair reproductive success in fish. Ecotoxicol Environ Safety 9: 282–293

    Article  PubMed  CAS  Google Scholar 

  • Lindström K, Österberg F (1980) Synthesis, X-ray structure determination, and formation of 3,4,5-trichloroguaiacol occurring in kraft pulp spent bleach liquoirs. Can J Chem 58: 815–822

    Article  Google Scholar 

  • Lindström K, Österberg F (1986) Chlorinated carboxylic acids in softwood kraft pulp spent bleach liquors. Environ Sei Technol 20: 133–138

    Article  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16: 274–278

    Article  CAS  Google Scholar 

  • McBride M B, Wesselink L G (1988) Chemisorption of catechol on gibbsite, boehemite and noncrystalline alumina surfaces. Env Sei Technol 22: 703–708

    Article  CAS  Google Scholar 

  • McKague B, Sousa F de, Strömberg L M, Kringstad K P (1988) Formation of 2,2,4,5-tetra- chloro-cyclopentene-l,3-dione in the chlorination of kraft lignin, kraft pulp, tetrachloro- catechol and tetrachloro-o-benzoquinone. Holzforschung 41:191–193

    Article  Google Scholar 

  • Molander S, Blanck H (1988) Effects of 4,5,6-trichloroguaiacol on periphyton communities from brackish water mesocosms. Water Sei Technol 20 (2): 193–196

    CAS  Google Scholar 

  • Molander S, Söderström M, Blanck H (1989) Effects on periphyton assemblages exposed to 4,5,6-trichloroguaiacol - an evaluation using Pollution Induced Community Tolerance (PICT). Aquat Toxicol (submitted)

    Google Scholar 

  • Moreland D (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31: 597–638

    Article  CAS  Google Scholar 

  • Neilson A H (1988) Experimental procedures for environmental hazard assessment. In: Schmidtke NW (ed) Toxic contamination in large lakes, vol I. Chronic effects of toxic contaminants in large lakes. Lewis, Chelsea, pp 285–313

    Google Scholar 

  • Neilson A H, Allard A-S, Hynning P A, Remberger M, Landner L (1983) Bacterial methyla- tion of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high molecular weight chlorinated lignin. Appl Environ Microbiol 45: 774–783

    PubMed  CAS  Google Scholar 

  • Neilson A H, Allard A-S, Reiland S, Remberger M, Tärnholm A, Viktor T, Landner L (1984) Tri- and tetra-chloroveratrole, metabolites produced by bacterial O-methylation of tri- and tetrachloroguaiacol: an assessment of their bioconcentration potential and their effects on fish reproduction. Can J Fish Aquat Sci 41: 1502–1512

    Article  CAS  Google Scholar 

  • Neilson A H, Allard A-S, Remberger M (1985) Biodegradation and transformation of recalcitrant compounds. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 2/C. Springer, Berlin, Heidelberg, New York, Tokyo, pp 29–86

    Google Scholar 

  • Neilson A H, Allard A-S, Lindgren C, Remberger M (1987) Transformation of chloroguaia- cols, chloroveratroles, and chlorocatechols by stable consortia of anaerobic bacteria. Appl Environ Microbiol 53: 2511–2519

    PubMed  CAS  Google Scholar 

  • Neilson A H, Lindgren C, Hynning P-À, Remberger M (1988) Methylation of halogenated phenols and thiophenols by cell extracts of Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 54: 524–530

    PubMed  CAS  Google Scholar 

  • Neish A C (1965) Coumarins, phenylpropanes, and lignin. In: Bonner J, VarnerJE (eds) Plant biochemistry. Academic Press, London, New York, pp 581–617

    Google Scholar 

  • Notini M, Rosemarin A, Landner L (1988) Enclosure studies on Baltic sea ecosystems. 1 st Eur Conf Ecotoxicol, Oct 17–19,1988, Copenhagen

    Google Scholar 

  • Oikari A, Ånäs E (1985) Chlorinated phenolics and their conjugates in the bile of trout (Salmo gairdneri) exposed to contaminated waters. Bull Environ Contam Toxicol 35: 802–809

    Article  PubMed  CAS  Google Scholar 

  • Oikari A, Holmbom B, Änäs E, Miilunpalo M, Kruzynski G, Castrén M (1985) Ecotoxicologi- cal aspects of pulp and paper mill effluents discharged to an inland water system: Distribution in water, and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat Toxicol 6: 219–239

    Article  CAS  Google Scholar 

  • Opperhuizen A, Serne P, Van der Steen J M D (1988) Thermodynamics of fish/water and octan-l-ol/water partitioning of some chlorinated benzenes. Environ Sei Technol 22: 286–292

    Article  CAS  Google Scholar 

  • Petersen RC Jr, Petersen L B-M (1988) Compensatory mortality in aquatic populations: its importance for interpretation of toxicant effects. Ambio 17: 381–386

    Google Scholar 

  • Remberger M, Allard A-S, Neilson A H (1986) Biotransformations of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments. Appl Environ Microbiol 51: 552–558

    PubMed  CAS  Google Scholar 

  • Remberger M, Hynning P-À, Neilson AH (1988) Comparison of procedures for recovering chloroguaiacols and chlorocatechols from contaminated sediments. Environ Toxicol Chem 7:795–805

    Article  CAS  Google Scholar 

  • Renberg L, Svanberg O, Bengtsson B-E, Sundström G (1980) Chlorinated guaiacols and catechols bioaccumulation potential in bleaks (.Alburnus alburnus, Pisces) and reproductive and toxic effects on the harpacticoidNitocra spinipes (Crustacea). Chemosphere 9: 143–150

    Article  CAS  Google Scholar 

  • Rosemarin A, Notini M, Soderstrdm M, Landner L, Jensen S (1988) Fate and effects of the pulp mill chlorophenolic 4,5,6-trichloroguaiacol in a Baltic Sea littoral model ecosystem. Sci Tot Environ (submitted)

    Google Scholar 

  • Saarikoski J, Viluksela M (1981) Influence of pH on the toxicity of substituted phenols to fish. Arch Environ Contam Toxicol 10: 747–753

    Article  PubMed  CAS  Google Scholar 

  • Saarikoski J, Viluksela M (1982) Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotoxicol Environ Safety 6: 501–512

    Article  PubMed  CAS  Google Scholar 

  • Saarikoski J, Lindstrom R, Tyynela M, Viluksela M (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotoxicol Environ Safety 11:158–173

    Article  PubMed  CAS  Google Scholar 

  • Sawhney B L, Pignatello J J, Steinberg S M (1988) Determination of 1,2-dibromoethane (EDB) in field soils: implications for volatile compounds. J Environ Qual 17:149–152

    Article  CAS  Google Scholar 

  • SCPF (1982) Environmentally harmonized production of bleached pulps. Final report of a project 1977–81. IPK, Box 8309,104 20 Stockholm, Sweden. 190 pp. (In Swedish)

    Google Scholar 

  • Sivak M N, Walker D A (1985) Chlorophyll a fluorescence: can it shed light on fundamental questions in photosynthetic carbon dioxide fixation? Plant Cell Environ 8: 439–448

    Article  CAS  Google Scholar 

  • Söderström M, Wachtmeister CA, Förlin L (1989) Chlorinated phenolics in fish bile as a measure of water contamination by bleached kraft mill effluents. In: Proc 1 st Eur Conf Ecotoxicol, Copenhagen 1988 (in press)

    Google Scholar 

  • Strömberg L, Sousa F de, Ljungquist P, McKague B, Kringstad K P (1987) An abundant chlorinated furanone in the spent chlorination liquor from pulp bleaching. Environ Sci Technol 21: 754–756

    Article  Google Scholar 

  • Subba-Rao R V, Alexander M (1983) Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl Environ Microbiol 44: 659–668

    Google Scholar 

  • Swackhamer D L, Hites R A (1988) Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior. Environ Sci Technol 22: 543–548

    CAS  Google Scholar 

  • Swallow K C, Shifrin N S, Doherly P L (1988) Hazardous organic compound analysis.Environ Sci Technol 22:136–142

    CAS  Google Scholar 

  • Tabata K (1962) Toxicity of ammonia to aquatic animals with reference; to the effects of pH and carbonic acid. Bull Tokai Reg Fish Res Lab 34: 67–74 (Engl transl)

    Google Scholar 

  • Veith G D, DeFoe D L, Bergstedt B V (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36:1040–1048

    Article  CAS  Google Scholar 

  • Wachtmeister C A, Bergman A (1987) Phase transfer mediated synthesis of radiolabeled alkyl aryl ethers and sulphides. J Labelled Comp Radiopharm 24: 925–930

    Article  Google Scholar 

  • Xie T M, Dyrssen D (1984) Simultaneous determination of partition coefficients and acidity constants of chlorinated phenols and guaiacols by gas chromatography. Anal Chim Acta 160:21–30

    Article  CAS  Google Scholar 

  • Xie T M, Abrahamsson K, Fogelqvist E, Josefsson B (1986) Distribution of chlorophenolics in a marine environment. Environ Sci Technol 20: 457–463

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neilson, A.H. et al. (1989). Advanced Hazard Assessment of 4,5,6-Trichloroguaiacol in the Swedish Environment. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics