Skip to main content

Advanced Hazard Assessment of Arsenic in the Swedish Environment

  • Chapter
Chemicals in the Aquatic Environment

Summary

Arsenic occurs as a natural component of aquatic environments and at raised levels due to pollution. In Sweden it is emitted mainly as inorganic arsenic.

Arsenate is the dominating arsenic species in natural waters while reduced species such as arsenite may predominate in interstitial water of sediments. In addition, arsenic may be present as organic compounds or in inorganic complexes. All these forms are interconverted due to chemical or biological acitvity. The ecotoxicity of arsenic is therefore a variable that can be determined only for a defined system of arsenic species and biological targets.

Sediments seem to be the main sink for arsenic input in aquatic ecosystems. Therefore the sediment-dwelling fauna may be affected by the large amounts of arsenic accumulating in their habitat.

The most significant route of arsenic into aquatic biota is the uptake of arsenate in algae. Algae have a high capacity to transform arsenate for example to arsenite, methylated arsenic acids, arsenosugars and arsenolipids. Algal metabolism is therefore crucial for the distribution of arsenic in the ecosystem. No biomagnification of arsenic occurs but several organic arsenic compounds formed by algae, and their degradation products, have been identified at higher trophic levels of the ecosystem.

Algae are also the main target of arsenate toxicity. The mode of action is through interference with phosphate metabolism, particularly in photosynthesis. The competition between arsenate and phosphate for various biochemical sites implies that phosphate can protect algae from arsenate toxicity. This is expressed in the considerably higher sensitivity of freshwater algal communities as compared to brackish-water or marine algae. Phosphorus-limited environments (such as lakes, streams and the Gulf of Bothnia) should therefore be considered particularly vulnerable to arsenate exposure. In Sweden most arsenic pollution occurs in these environments.

Periphyton and Fucus from the Baltic Sea are affected at levels found in large areas of the sea around a smelter discharging into the Gulf of Bothnia. Since Fucus is the dominating structural element of Baltic littoral ecosystems, impact on this plant may cause drastic secondary effects on the entire ecosystem. Freshwater algal communities are affected at concentrations similar to or even lower than the back-ground levels of many Swedish lakes. In polluted streams and lakes these levels are exceeded at least fivefold.

In conclusion, arsenic contamination is a significant problem in the Swedish environment, and every increase in the arsenic loading of phosphorus- limited ecosystems will result in effects on the algal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel KH, Rancitelli LA (1975) Major, minor and trace element eompositon of coal and fly ash as determined by instrumental neutron activation analysis. Trace Element Fuel Symposium 1973. Adv Chem Ser 141:118–138

    CAS  Google Scholar 

  • Abernathy JR (1983) Role of arsenical chemicals in agriculture. In: Lederer WH, Fensterheim RJ (eds) Arsenic. Industrial, biomedical, environmental perspectives. Van Nostrand Reinhold, New York

    Google Scholar 

  • Aggett J, Aspell AC (1976) The determination of arsenic (III) and total arsenic by atomic-absorption spectroscopy. Analyst 101: 341–347

    PubMed  CAS  Google Scholar 

  • Alasaarela E, Tolouen E, Eloranta V (1986) Nutrients regulating algal growth in the Bothnian Bay. Ophelia 4: 323–328

    Google Scholar 

  • Andersson I (1980) Ã…rsrapport för recipientundersökningar utanför Rönnskärsverken 1979. IVL-Rapp till Boliden Metall AB, Göteborg

    Google Scholar 

  • Andersson I (1982) Rapport frän recipientundersökningar i havet utanför Rönnskärsverken 1978–1981. IVL-Rapp till Boliden Metall AB, Göteborg 1982–06-23

    Google Scholar 

  • Andreae MO (1977) Determination of arsenic species in natural waters. Anal Chem 49: 820–823

    PubMed  CAS  Google Scholar 

  • Andreae MO (1978) Distribution and speciation of arsenic in natural waters and some marine algae. Deep-Sea Res 25: 391–402

    CAS  Google Scholar 

  • Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: The influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr 24: 440–452

    CAS  Google Scholar 

  • Andreae MO, Froelich PN (1984) Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus 36B: 101–117

    CAS  Google Scholar 

  • Andreae MO, Klumpp D (1979) Biosynthesis and release of organoarsenic compounds by marine algae. Environ Sci Technol 13: 738–741

    CAS  Google Scholar 

  • Arbab-Zavar MH, Howard AG (1980) Automated procedure for the determination of soluble arsenic using hydride generation atomic-absorption spectroscopy. Analyst 105: 744- 750

    CAS  Google Scholar 

  • Aronsson I (1986) Glasbrukens miljöproblem. PM 1986–05-26. Länstyrelsen, Kronobergs Län, Växjö

    Google Scholar 

  • Austin LS, Millward GE (1984) Modelling temporal variations in the global tropospheric arsenic burden. Atmos Environ 18:1909–1919

    CAS  Google Scholar 

  • Baker MD, Wong PTS, Chau YK, Mayfield CI, Inniss WE (1983) Methylation of arsenic by freshwater green algae. Can J Fish Aquat Sci 40:1254–1257

    CAS  Google Scholar 

  • Bertine KK, Goldberg ED (1971) Fossil fuel combustion and the major sedimentary cycle. Science 173: 233–235

    PubMed  CAS  Google Scholar 

  • Björklund I (1983) Recipientkontroll utanför Boliden Metall AB, 1982. Rapp till Boliden Metall AB. 1983–08-22. Laboratoriet för produkt- och utsläppskontroll, SNV, Solna

    Google Scholar 

  • Björklund I (1985) Regional kartering av metallinnehÃ¥ll i mjukdelar hos Lymnaea utmed Bot- tenvikskusten 1980–82. SNV Rapp 3047, Solna

    Google Scholar 

  • Björklund I, Borg H, Johansson K (1982) MiljöpÃ¥verkan av luftburet kvicksilver och andra metaller i mellersta och norra Sverige. SNV PM 1568, Solna

    Google Scholar 

  • Blanck H (1985) A simple, community level, ecotoxicological test system using samples of periphyton. Hydrobiologia 124: 251–261

    Google Scholar 

  • Blanck H, Wängberg S-Ã… (1988 a) The validity of an ecotoxicological test system. Short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can J Fish Aquat Sci 45: 1807–1815

    CAS  Google Scholar 

  • Blanck H, Wängberg S-Ã… (1988 b) Induced community tolerance in marine periphyton established under arsenate stress. Can J Fish Aquat Sci 45:1816–1819

    Google Scholar 

  • Blanck H, Wallin G, Wängberg S-Ã… (1984) Species-dependent variation in algal sensitivity to chemical compounds. Ecotox Environ Safe 8: 339–351

    CAS  Google Scholar 

  • Blanck H, Wängberg S-Ã…, Molander S (1988) Pollution-induced community tolerance -a new ecotoxicological tool. In: J Cairns Jr and JR Pratt (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM STP 988, Amer Soc Test Mat, Philadelphia, pp 219–230

    Google Scholar 

  • Bligh G, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Bio- chem Physiol 37: 911

    CAS  Google Scholar 

  • Blomqvist P, Heyman U (1988) Effects of arsenate additions to pelagic mesocosms on phyto-plankton biomass and composition. Limnologica (in press)

    Google Scholar 

  • Borg H (1984) Background levels of trace metals in Swedish fresh waters. SNV PM 1817 (In Swedish with English summary), Solna

    Google Scholar 

  • Borg H (1986) Metallers förekomstformer i sjövatten i Rönnskärsomrädet. SNV Rapp 3124, Solna

    Google Scholar 

  • Borg H, Holm K, Holmgren K (1985) Determination of arsenic with automated hydride generation and flameless atomic absorption spectrometry. SNVPM 1985 (In Swedish with English summary), Solna

    Google Scholar 

  • Bottino NR, Newman RD, Cox ER, Stockton R, Hoban M, Zingaro RA, Irgolic KJ (1978) The effcts of arsenate and arsenite on the growth and morphology of the marine unicellular algae Tetraselmis chui (Chlorophyta) and Hymenomonas carterae (Chrysophyta). J Exp Mar Biol Ecol 33:153–168

    CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London, New York

    Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2: 251–296

    CAS  Google Scholar 

  • Braman RS (1975) Arsenic in the environment. In: Woolson EA (ed) Arsenical pestides. ACS Symp Ser 7, Am Chem Soc, Washington D. C.

    Google Scholar 

  • Braman RS (1983) Environmental reaction and analysis methods. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier, Amsterdam

    Google Scholar 

  • Braman RS, Foreback CC (1973) Methylated forms of arsenic in the environment. Science 182:1247–1249

    PubMed  CAS  Google Scholar 

  • Braman RS, Johnson DL, Foreback CC, Ammons JM, Bricker JL (1977) Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. Anal Chem 49: 621–625

    PubMed  CAS  Google Scholar 

  • Brinckman FE, Jewett KL, Iverson WP, Irgolic KJ, Ehrhardt KC, Stockton R (1980) Graphite furnace atomic absorption spectrophotometers as automated element-specific detectors for high-pressure liquid chromatography. The determination of arsenite, arsenate, methylar- sonic acid and dimethylarsinic acid. J Chromatogr 191: 31–46

    CAS  Google Scholar 

  • Budd K, Craig SR (1981) Resistance to arsenate toxicity in the bluegreen alga Synechococcus leopoliensisCan J Bot 59:1518–1521

    CAS  Google Scholar 

  • Budd K, Casey JR, MacArthur JD (1986) Arsenite toxicity and arsenite tolerance in the cya- nobacterium Synechococcus leopoliensis Can J Bot 64: 2433–2440

    CAS  Google Scholar 

  • Burton JD, Statham PJ (1982) Occurrence, distribution and chemical speciation of some minor dissolved constituents in ocean waters. Environ Chem, vol 2. R Soc Chem, London, pp 234–265

    Google Scholar 

  • Cannon JR, Edmonds JS, Francesconi KA, Raston CL, Saunders JB, Skelton BW, White, AH (1981) Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine. Aust J Chem 34: 787–798

    CAS  Google Scholar 

  • Carnö B (1983) Urlakning i samband med träimpregnering. Temadag i Falun 83–04-14. SNV PM 1778, Solna

    Google Scholar 

  • Cawse PA (1974) A Survey of Atmospheric Trace Elements in the U.K. (1972–1973). Rep AERA R 7660. UK Atomic Energy Authority, Harwell, 95 pp

    Google Scholar 

  • Chakraborti D, Adams F, Irgolic KJ (1986) Compound-specific determination of arsenite at sub-nanogram concentrations in freshwater and seawater. Fresenius Z Anal Chem 323: 340–342

    CAS  Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longianis: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205

    CAS  Google Scholar 

  • Cheng C-N, Focht DD (1979) Production of arsine and methylarsines in soil and in culture. Appl Environ Microbiol 38: 494–498

    PubMed  CAS  Google Scholar 

  • Chilvers DC, Peterson PJ (1987) Global cycling of arsenic. In: Hutchinson TC, Meerma KM (eds) Lead, Mercury, Cadmium and Arsenic in the Environment. SCOPE 31. Wiley, New York, pp 279–301

    Google Scholar 

  • Christakopoulos A (1988) Quarternary organoarsenic compounds in aquatic organisms, a study of their fate using gas chromatographic - mass spectrometric methods. PhD thesis, Univ Stockholm

    Google Scholar 

  • Christakopoulos A, Hamasur B, Norm H, Nordgren I (1988 a) Quantitative determination of arsenocholine and acetylarsenocholine in aquatic organisms using pyrolysis and gas chromatography - mass spectrometry. Biomed Environ Mass Spectrom 15: 67–74

    PubMed  CAS  Google Scholar 

  • Christakopoulos A, Norm H, Sandström M, Thor H, Moldeus P, Ryhage R (1988 b) Cellular metabolism of arsenocholine. J Appl Toxicol 8 (2): 119–127

    PubMed  CAS  Google Scholar 

  • Clement WH, Faust SD (1973) A new convenient method for determining arsenic (-I-3) in natural waters. Environ Lett 5(3): 155–164

    CAS  Google Scholar 

  • Cmarko V (1963) Hygienic problems of arsenic exhalations of ENO plant. Czeck Hyg 8: 359–362. (In Slovak, with English summary)

    CAS  Google Scholar 

  • Crecelius EA (1974) The geochemistry of arsenic and antimony in Pudget Sound and Lake Washington, Washington. Thesis, Seattle, Washington, Univ Washington

    Google Scholar 

  • Cooney RV, Mumma RO, Bensen AA (1978) Arsoniumphospholipid in algae. Proc Natl Acad Sci USA 75: 4262–4264

    PubMed  CAS  Google Scholar 

  • Cox DP (1975) Microbiological methylation of arsenic. In: Woolson EA (ed) Arsenical pesticides. ACS Symp Ser 7. Am Chem Soc, Washington, D. C.

    Google Scholar 

  • Cullen WR, McBride, BC, Reglinski J (1984) The reduction of trimethylarsine oxide to tri- methylarsine by thiols: A mechanistic model for the biological reduction of arsenicals. J Inorg Biochem 21: 45–60

    CAS  Google Scholar 

  • Durrant PJ, Durrant B (1966) Introduction to advanced inorganic chemistry, 3rd edn. Longmans, London

    Google Scholar 

  • Edmonds JS, Francesconi KA (1981 a) Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature (London) 289: 602- 604

    CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1981 b) The origin and chemical form of arsenic in the school whiting. Mar Pollut Bull 12: 92–96

    CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1983) Arsenic-containing ribofuranosides: Isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra. J Chem Soc Perkin Trans I: 2375–2382

    Google Scholar 

  • Edmonds JS, Francesconi KA (1987) Transformations of arsenic in the marine environment Experientia 43: 553–557

    CAS  Google Scholar 

  • Edmonds JS, Francesconi KA, Cannon JR, Raston CL, Skelton BW, White AH (1977) Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus georg. Tetrahedron Lett 18:1543–1546

    Google Scholar 

  • Edmonds JS, Francesconi KA, Healy PC, White AH (1982 a) Isolation and crustal structure of an arsenic-containing sugar sulphate from the kidney of the giant clam, Tridacna maxima X-ray crystal structure of (2S)-3- 5-deoxy-5-(dimethylarsinoyl)-ß-D-ribofuranosyloxy- 2-hydroxypropyl hydrogen sulphate. J Chem Soc Perkin Trans I: 2989–2993

    Google Scholar 

  • Edmonds JS, Francesconi KA, Hansen J A (1982 b) Dimethyloxarsylethanol from anaerobic decomposition of brown kelp(Ecklonia radiata) a likely precursor of arsenobetaine in marine fauna. Experientia 38: 643–644

    Google Scholar 

  • EPA (1975) Substitute Chemical Program 1975. Initial scientific review of cacodylic acid. U. S. Environmental Protection Agency Office of Pesticide Programs Criteria and Evaluation Division, Washington, DC 20460. EPA-540/1- 75–021

    Google Scholar 

  • Faust SD, Winka A, Belton T, Tucker R (1983) Assessment of the chemical and biological significance of arsenical compounds in a heavily contaminated watershed. Part II. Analysis and distribution of several arsenical species. J Environ Sci Health A18(3): 389–411

    CAS  Google Scholar 

  • Feldman C (1979) Improvements in the arsine accumulation-helium glow detector procedure for determining traces of arsenic. Anal Chem 51: 664–669

    CAS  Google Scholar 

  • Ferguson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6(N11): 1259–1274

    CAS  Google Scholar 

  • Flanjak J (1982) Inorganic and organic arsenic in some commercial east Australian crustacea. J Sci Food Agric 33: 579–583

    PubMed  CAS  Google Scholar 

  • Förstner U, Wittman GTW (1981) Metal pollution in the aquatic environment, 2nd edn. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Francesconi KA, Micks P, Stockton RA, Irgolic KJ (1985) Quantitative determination of arsenobetaine, the major water-soluble arsenical in three species of crab, using high pressure liquid chromatography and an inductively coupled argon plasma emission spectrometer as the arsenic-specific detector. Chemosphere 14:1443–1453

    CAS  Google Scholar 

  • Grabinski AA (1981) Determination of arsenic (III), arsenic (V), monomethylarsonate, and dimethylarsinate by ion-exchange chromatography with flame-less atomic absorption spec- trometric detection. Anal Chem 53: 966–968

    CAS  Google Scholar 

  • Hallberg R (1979) Heavy metals in the sediments of the Gulf of Bothnia. Ambio 8: 265–269

    CAS  Google Scholar 

  • Hamilton EI (1974) The chemical elements and human morbidity - water, air and places – a study of natural variability. Sci Total Environ 3: 3–85

    PubMed  CAS  Google Scholar 

  • Hanaoka K, Tagawa S (1985 a) Isolation and identification of arsenobetaine as a major water- soluble arsenic compound from muscle of blue pointer Isurus oxyrhincus and whitetip shark Carcarhinus longimanus Bull Jpn Soc Sci Fish 51: 681–685

    CAS  Google Scholar 

  • Hanaoka K, Tagawa S (1985 b) Identification of arsenobetaine in muscle of roundnose flounder Eopsetta grigorjewi. Bull Jpn Soc Sci Fish 51:1203

    CAS  Google Scholar 

  • Hedlund B, Norin H, Christakopoulos A, Alberts P, Bartfai T (1982) Acetylarsenocholine: A cholinergic agonist. J Neurochem 39: 871–873

    PubMed  CAS  Google Scholar 

  • Iadevaia R, Aharonson N, Woolson EA (1980) Extraction and cleanup of soil arsenical residues for analysis by high pressure liquid chromatographic- graphite furnace atomic absorption. J Assoc Off Anal Chem 63: 742–746

    CAS  Google Scholar 

  • IARC (1980) Monographs. Arsenic and its compounds, vol 23. Int Ag Res Cancer, Lyon, pp 39–141

    Google Scholar 

  • Iverson DG, Anderson MA, Holm TR, Stanforth RR (1979) An evaluation of column chromatography and flameless atomic absorption spectrophotometry for arsenic speciation as applied to aquatic systems. Environ Sci Technol 13:1491–1494

    CAS  Google Scholar 

  • Johnson DL, Braman RS (1975) Alkyl- and inorganic arsenic in air samples. Chemosphere 6: 333–338

    Google Scholar 

  • Johnson DL, Pilson MEQ (1975) The oxidation of arsenite in seawater. Environ Lett 8(12): 157–171

    PubMed  CAS  Google Scholar 

  • Kaise T, Hanooka K, Togawa S (1987) The formation of trimethylarsine oxide from arsenobe-taine by biodégradation with marine microorganisms. Chemosphere 16: 2551–2558

    CAS  Google Scholar 

  • Kanamori S, Sugawara K (1965) Geochemical study of arsenic in natural waters. I. Arsenic in river water. J Earth Sci 13(1): 23–45

    CAS  Google Scholar 

  • Klumpp DW (1980) Characteristics of arsenic accumulation by the seaweeds Fucus spiralis and Ascophyllum modosum. Mar Biol 58: 257–264

    CAS  Google Scholar 

  • Klumpp DW, Peterson PJ (1981) Chemical characteristics of arsenic in a marine food chain. Mar Biol 62: 297–305

    CAS  Google Scholar 

  • Knowles FC, Benson AA (1983) Mode of action of a herbicide. Johnson grass and methanear-sonic acid. Plant Physiol 71: 235–240

    PubMed  CAS  Google Scholar 

  • Kurosawa S, Yasuda K, Taguchi M, Yamazaki S, Toda S, Morita M, Uehiro T, Fuwa K (1980) Identification of arsenobetaine, a water soluble organoarsenic compound in muscle and liver of a shark, Prionace glaucus. Agric Biol Chem 44: 1993–1994

    CAS  Google Scholar 

  • Lakso JU, Rose LJ, Peoples SA, Shirachi DY (1979) A colorimetric method for the determination of arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in biological and environmental samples. J Agric Food Chem 27:1229–1233

    PubMed  CAS  Google Scholar 

  • Landner L (1980) Sammanställning av undersökningar rörande den yttre miljön kring Rönnskärsverken. IVL-Rapp till Boliden AB, Stockholm

    Google Scholar 

  • Landner L, Waltersson E (1985) Rönnskärsverkens pÃ¥verkan pÃ¥ den yttre miljön. - Utvärder-ing av utförda undersökningar. Svenska Miljöforskargruppen AB. Stockholm 1985–05-30

    Google Scholar 

  • Landström O, Wenner CG (1965) Neutron-activation analysis of natural water applied to hydrology. AB Atomenergi, AE-204, Studsvik, Sweden

    Google Scholar 

  • Langston WJ (1980) Arsenic in U. K. estuarine sediments and its availability to benthic organisms. J Mar Biol Assoc UK 60: 869–881

    Google Scholar 

  • Lau B P-Y, Michalik P, Porter CJ, Kislik S (1987) Identification and confirmation of arsenobetaine and arsenocholine in fish, lobster and shrimps by a combination of fast atom bombardment and tandem mass spectrometry. Biomed Environ Mass Spectrom 14: 723- 732

    PubMed  CAS  Google Scholar 

  • Lawrence JF, Michalik P, Tam G, Conacher HBS (1986) Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. J Agric Food Chem 34: 315–319

    CAS  Google Scholar 

  • Lemmo NV, Faust SD, Belton T, Tucker R (1983) Assessment of the chemical and biological significance of arsenical compounds in a heavily contaminated water-shed. Part I. The fate and speciation of arsenical compounds in aquatic environments. - A literature review. J Environ Sci Health A 18(3): 335–387

    Google Scholar 

  • Lenvik K, Steinnes E, Pappas AC (1978) Contents of some heavy metals in Norwegian rivers.Nord Hydrol 9:197–206

    CAS  Google Scholar 

  • Lindahl G, Wallström K, Roomans GM, Pedersén M (1983) X-ray microanalysis of planktic diatoms in in situ studies of metal pollution. Bot Mar 26: 367–373

    CAS  Google Scholar 

  • Lindau L (1977) Emissions of arsenic in Sweden and their reductions. Environ Health Per- spect 19: 25–29

    CAS  Google Scholar 

  • Lithner G (1974) Rönnskärsutredningen 1973. Resultat av 1973–74 ärs Rönnskärs utredningar, avseende tungmetallföroreningar i Skelleftebukten och angränsande kustavsnitt. SNV PM 497, Solna

    Google Scholar 

  • Lithner G (1978) Regional sjöundersökning i Skellefte kommuri med omnejd. II. Sediment som mätare pÃ¥ luftburen metallförorening. SNV PM 1016, Solna

    Google Scholar 

  • Lithner G (1986) Effekter pÃ¥sjöar och vattendrag av Rönnskärsverkens utsläpp av svaveldi- oxid, arsenik och metaller. 1986–04-25. Laboratoriet för produkt- och utsläppskontroll, SNV, Solna

    Google Scholar 

  • Lithner G, Borg H (1986) Vattenkemiska förhÃ¥llanden i samband med snösmältningen 1984 i smÃ¥ och stora vattendrag i RönnskärsomrÃ¥det. Preliminär rapport 1986–05-28. Laboratoriet för produkt- och utsläppskontroll, SNV, Solna

    Google Scholar 

  • Lithner G, Holm K, Ekström C, Moberg G (1983) Arsenik, kvicksilver och andra metaller i hÃ¥vplankton frän Bottniska viken 1975–1980. In: 2nd Swedish-Finnish seminar on the Gulf of Bothnia, Luleä, Sweden, June 16–17,1981. SNV PM 1618, Solna, pp 167–171

    Google Scholar 

  • Ljunggren K, Sjöstrand B, Johnels AG, Olsson M, Otterlind G, Westermark T (1971) Activation analysis of mercury and other environmental pollutants in water and aquatic ecosystems. Nuclear techniques in environmental pollution. Int At Energy Ag, Wien, pp 373- 405

    Google Scholar 

  • Lunde G (1973 a) Separation and analysis of organic-bound and inorganic arsenic in marine organisms. J Sci Food Agric 24:1021–1027

    PubMed  CAS  Google Scholar 

  • Lunde G (1973 b) The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae. Acta Chem Scand 27:1586–1594

    PubMed  CAS  Google Scholar 

  • Lunde G (1977) Occurrence and transformation of arsenic in the marine environment. Environ Health Perspect 19: 47–52

    PubMed  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Rauchbaar A (1982) Occurrence of arsenic in plaice (Pleuronectes platessa) nature of organo-arsenic compound present and its excretion by man. Environ Health Perspect 45: 165–170

    PubMed  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, van der Greef J, ten Noever de Brauw MC (1983) Identification of arsenobetaine in sole, lemon sole, flounder, dab, crab and shrimps by field desorption and fast atom bombardment mass spectrometry. Chemosphere 12:131–141

    CAS  Google Scholar 

  • Maher WA (1981) Determination of inorganic and methylated arsenic species in marine organisms and sediments. Anal Chim Acta 126:157–165

    CAS  Google Scholar 

  • Maher WA (1984) Characteristics of arsenic in a marine mollusc and crustacean. Mar Biol Lett 5: 47–53

    CAS  Google Scholar 

  • Minkkinen P, Yliruokanen I (1978) The arsenic distribution in Finnish peat bogs. Kemia- Kemi 7–8: 331–335

    Google Scholar 

  • Mölsä H, Häkkilä S, Puhakka M (1986) Reproductive success of Macoma balthica in relation to environmental stability. Ophelia Suppl 4:167–177

    Google Scholar 

  • Morita M, Uehiro T, Fuwa K (1981) Determination of arsenic compounds in biological samples by liquid chromatography with inductively coupled argon plasma-atomic emission spectrometric detection. Anal Chem 53:1806–1808

    CAS  Google Scholar 

  • Morris RJ, McCartney MJ, Howard AG, Arbab-Zavar MH, Davis JS (1984) The ability of a field population of diatoms to discriminate between phosphate and arsenate. Mar Chem 14: 259–265

    CAS  Google Scholar 

  • Munz H, Lorenzen W (1984) Differenzierte bestimmung von Anorganischem und Organishem Arsen in Lebensmitteln mit hilfe der Atomabsorptions-spektroskopie. Fresenius Z Anal Chem 319: 395–398

    Google Scholar 

  • NAS (1977) Medical and biologic effects of environmental pollutants: Arsenic. Nat Acad Sci, Washington D. C.

    Google Scholar 

  • Nelson KW (1977) Industrial contributions of arsenic to the environment. Environ Health Perspect 19: 31–34

    PubMed  CAS  Google Scholar 

  • Norin H, Christakopoulos A (1982) Evidence for the presence of arseno-betaine and another organoarsenical in shrimps. Chemosphere 11: 287–298

    CAS  Google Scholar 

  • Norin H, Vahter M (1984) Organic arsenic compounds in fish. SNV PM 1892 (In Swedish with English summary), Solna

    Google Scholar 

  • Norin H, Ryhage R, Christakopoulos A, Sandström M (1983) New evidence for the presence of arsenocholine in shrimps (Pandalus borealis) by use of pyro-lysis gas chromatography - atomic absorption spectrometry/mass spectrometry. Chemosphere 12: 299–315

    CAS  Google Scholar 

  • Norin H, Vahter M, Christakopoulos A, Sandstrom M (1985 a) Concentration of inorganic and total arsenic in fish from industrially polluted water. Chemosphere 14: 325–334

    Google Scholar 

  • Norin H, Christakopoulos A, Sandstrom M, Ryhage R (1985 b) Mass fragmentographic estimation of trimethylarsine oxide in aquatic organisms. Chemosphere 14: 313–323

    Google Scholar 

  • Norin H, Christakopoulos A, Rondahl L, Hagman A, Jacobsson S (1987) Identification and quantification of arsenocholine and acetylarsenocholine in trace amounts in biological material by use of pyrolysis gas chromatography-/mass spectrometry. Biomed Environ Mass Spectrom 14:117–125

    PubMed  CAS  Google Scholar 

  • Notini M, Nagell B, Hagström Ã… Grahn O (1977) An outdoor model simulating a Baltic Sea littoral ecosystem. Oikos 28: 2–9

    CAS  Google Scholar 

  • Notini M, Holmgren K, Rosemarin A (1987) Long-term fate and effects of low levels of arsenate on the Baltic Sea Fucus vesiculosus ecosystem. Proc 21st Eur Mar Biol Symp, Gdansk 1986

    Google Scholar 

  • Notini M, Rosemarin A, Landner L (1988) Enclosure studies on Baltic Sea ecosystems. 1 st Eur Conf Exotoxicol, Oct 17–19,1988, Copenhagen, Denmark

    Google Scholar 

  • NRCC (1978) Effects of arsenic in the Canadian environment. Natl Res Counc Can, Publ No 15391, Environ Seer, Ottawa

    Google Scholar 

  • Odanaka Y, Tsychiya N, Matano O, Goto S (1983) Determination of inorganic arsenic and methylarsenic compounds by gas chromatography and multiple ion detection mass spectrometry after hydride generation-heptane cold trap. Anal Chem 55: 929–932

    PubMed  Google Scholar 

  • Onishi H, Sandell EB (1955) Geochemistry of arsenic. Geochim Cosmochim Acta 7:1–33

    CAS  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK (1980) The oxidation of arsenite by aquatic sediments. J Environ Qual 9(4): 700–703

    CAS  Google Scholar 

  • Ohta K, Suzuki M (1978) Electrothermal atomic-absorption spectrometry of arsenic and its application to environmental samples. Talanta 25:160–162

    PubMed  CAS  Google Scholar 

  • Planas D, Healy FP (1978) Effects of arsenate on growth and phosphorus metabolism of phytoplankton. J Phycol 14: 337–341

    CAS  Google Scholar 

  • Pickett AW, McBride BC, Cullen WR, Manji H (1981) The reduction of trimethylarsine oxide by Candida humicola. Can J Microbiol 27: 773–778

    PubMed  CAS  Google Scholar 

  • Pillay KKS, Thomas CC, Hyche CM (1973) Neutron activation analysis of some ot the biologically active trace elements in fish. In: Hemphill DD (ed) Proc 7th Annu Conf Trace Substances in Environmental Health, pp 415–420

    Google Scholar 

  • Pourbaix M (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Oxford, New York

    Google Scholar 

  • Reuther R (1986) The occurrence and speciation of arsenic in the aquatic environment. A Literature review. SERG, Kil (Sweden) 1986–11-20, 48 pp

    Google Scholar 

  • Rosemarin A, Notini M (1989) Structural and functional effects of low levels of arsenic in a Baltic Sea littoral model ecosystem. J Mar Biol Assoc UK. (in press)

    Google Scholar 

  • Rosemarin A, Notini M, Holmgren K (1985) The fate of arsenic in the Baltic Sea Fucus vesiculosus ecosystem. Ambio 14: 342–345

    CAS  Google Scholar 

  • Rosen G, Lithner G (1986) Växtplanktons respons pÃ¥ metallförorening i Rönnskärs- omrÃ¥dets sjöar. Preliminar Rapp 1986–05-22. Laboratoriet for produkt- och utslappskontroll, SNV, Solna

    Google Scholar 

  • Rossman R (1982) Trace metal chemistry of the waters of Lake Huron. Great Lakes Res Div, Publ 21. Univ Mich, Ann Arbor

    Google Scholar 

  • Sanders JG (1978) Interactions between arsenic species and algae. PhD thesis, Univ North Carolina at Chapel Hill, 77 pp

    Google Scholar 

  • Sanders JG (1979) Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae). J Phycol 15: 424–428

    CAS  Google Scholar 

  • Sanders JG (1980) Arsenic cycling in marine systems. Mar Environ Resi 3(4): 257–266

    CAS  Google Scholar 

  • Sanders JG (1983) Role of marine phytoplankton in determining the chemical speciation and biogeochemical cycling of arsenic. Can J Fish Aquat Sci 40 (Suppl 2): 192–196

    Google Scholar 

  • Sanders JG (1986) Alteration of arsenic transport and reactivity in coastal marine systems due to biological transformation. Rapp P-V Reun Cons Int Explor Mer 186:185–192

    CAS  Google Scholar 

  • Sanders JG, Vermersch PS (1982) Response of marine phytoplankton to low levels of arsenate. J Plankton Res 4: 881–893

    CAS  Google Scholar 

  • Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coastal Mar Sci 10: 555–567

    CAS  Google Scholar 

  • Seydel IS (1972) Distribution and circulation of arsenic through water, organisms and sediments of Lake Michigan. Arch Hydrobiol 71(1): 17–30

    Google Scholar 

  • Shaikh AU, Tallman DE (1978) Species-specific analysis for nanogram quantities of arsenic in natural waters by arsine generation followed by graphite furnace atomic absorption spectrometry. Anal Chim Acta 98: 251–259

    CAS  Google Scholar 

  • Shibata Y, Morita M (1988) A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric Biol Chem 52 (4): 1087–1089

    CAS  Google Scholar 

  • Shinagawa A, Shiomi K, Yamanaka H, Kikuchi T (1983) Selective determination of inorganic arsenic (III), (V) and organic arsenic in marine organisms. Bull Jpn Soc Sci Fish 49:75–78

    CAS  Google Scholar 

  • Shiomi K, Shinagawa A, Azuma M, Yamanaka H, Kikuchi T (1983 a) Purification and comparison of water-soluble arsenic compounds in a flatfish Limanda herzensteini sea squirt Halocynthia roretzi and sea cucumber Stichopus japonicus Comp Biochem Physiol 74C: 393–396

    CAS  Google Scholar 

  • Shiomi K, Shinagawa A, Yamanaka H, Kikuchi T (1983 b) Purification and identification of arsenobetaine from the muscle of an octopusParoctopus dofleini Bull Jpn Soc Sci Fish 49: 79–83

    CAS  Google Scholar 

  • Shiomi K, Shinagawa A, Hirota K, Yamanaka H, Kikuchi T (1984 a) Identification of arsenobetaine as a major arsenic compound in the ivory shell Buccinum striatissimum. Agric Biol Chem 48: 2863–2864

    CAS  Google Scholar 

  • Shiomi K, Shinagawa A, Igarashi T, Yamanaka H, Kikuchi T (1984b) Evidence for the presence of arsenobetaine as a major arsenic compound in the shrimpSergestes lucens. Experi- entia 40:1247–1248

    CAS  Google Scholar 

  • Slooten L, Nuyten A (1983) Arsenylation of nucleoside diphosphates in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 725: 49–59

    CAS  Google Scholar 

  • Smith SD (1973) Asenic, antimony and bismuth. In: Bailar JC, Emeleus HJ, Nyholm R, Trot-man-Dickenson AF (eds) Comprehensive inorganic chemistry, vol 2. Pergamon, Oxford, New York, pp 547–683.

    Google Scholar 

  • Stary J, Zeman A, Kratzer K (1982) Synthesis and separation of arsenic specie. Radiochem Radioanal Lett 52: 263–272

    CAS  Google Scholar 

  • Stockton RA, Irgolic KJ (1979) The Hitachi graphite furnace-zeeman atomic absorption spectrometer as an automated, element-specific detector for high pressure liquid chromatography: The separation of arsenobetaine, arsenocholine and arsenite/arsenate. Int J Environ Anal Chem 6: 313–319

    CAS  Google Scholar 

  • Talmi Y, Bostick DT (1975) Determination of alkylarsenic acids in pesticide and environmental samples by gas chromatography with a microwave emission spectrometric detection system. Anal Chem 47: 2145–2150

    PubMed  CAS  Google Scholar 

  • Tam KH, Charbonneau SM, Bryce F, Lacroix G (1978) Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74As. Anal Biochem 86: 505–511

    PubMed  CAS  Google Scholar 

  • Thursby GB, Steele RL (1984) Toxicity of arsenite and arsenate to the marine macroalga Champia parvula (Rhodophyta). Environ Toxicol Chem 3: 391–397

    CAS  Google Scholar 

  • Traversy WJ, Goulden PD, Sheikh YM, Leacock JR (1975) Levels of arsenic and selenium in the Great Lakes Region. Environment Canada, Canada Centre for Inland Waters, Sci Ser 58,18 pp

    Google Scholar 

  • Vaskovsky VE, Korotchenko OD, Kosheleva LP, Levin VS (1972) Arsenic in the lipid extracts of marine invertebrates. Comp Biochem Physiol 41B: 777–784

    Google Scholar 

  • Von Endt DW, Kearney PC, Kaufman DD (1968) Degradation of MSMA by soil microorganisms. J Agric Food Chem 16(1): 17–20

    Google Scholar 

  • Wagemann R (1978) Some theoretical aspects of stability and solubility in inorganic arsenic in the freshwater environment. Water Res 12:139–145

    CAS  Google Scholar 

  • Walsh LM, Keeney DR (1975) Behaviour and phytotoxicity of inorganic arsenicals in soils. Chaper 3. In: Woolson EA (ed) Arsenical pesticides. ACS Symp Ser 7. Am Chem Soc, Washington, D. C., pp 35–52

    Google Scholar 

  • Walsh PR, Duce RA, Fasching JL (1979) Tropospheric arsenic over marine and continental regions. J Geophys Res 84:1710–1718

    CAS  Google Scholar 

  • Wangberg S-Ã… Blanck H (1988) Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. Ecotoxicol Environ Safety 16: 72–82

    PubMed  CAS  Google Scholar 

  • Wängberg S-Ã… Blanck H (1989 a) Modification of the toxic effect of arsenate by the internal nutrient status in microalgae. Proc Int Symp Cell Impacts Ecotoxicol, Lyon 18–20 May 1987 (in press)

    Google Scholar 

  • Wängberg S-Ã… Blanck H (1989 b) Arsenate tolerance in marine periphyton communities under different nutrient regimes. Can J Fish Aquat Sci (submitted)

    Google Scholar 

  • Wängberg S-Ã… Heyman U, Blanck H (1989) Arsenate tolerance in freshwater periphyton and phytoplankton established under arsenate stress in limnocorrals. Can J Fish Aquat Sci (submitted)

    Google Scholar 

  • Waslenchuk DG (1978) The budget and geochemistry of arsenic in a continental shelf environment. Mar Chem 7: 39–52

    CAS  Google Scholar 

  • Welsh AD, Landau RL (1942) The arsenic analogue of choline as a component of lechitin in rats fed arsenocholine chloride. J Biol Chem 144: 581–588

    Google Scholar 

  • WHO (1981) Arsenic. Environmetal health criteria, vol 18 World Health Organization, Geneva

    Google Scholar 

  • Whitefield FB, Freeman DJ, Shaw KJ (1983) Trimethylarsine: an important off-flavour component in some prawn species. Chem Ind 17: 786–787

    Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183: 1049–1052

    PubMed  CAS  Google Scholar 

  • Woolson EA (ed) (1975) Arsenical Pesticides. ACS Symp Ser 7. Am Chem Soc, Washington, D.C.

    Google Scholar 

  • Woolson EA (1977) Fate of arsenicals in different environmental substrates. Environ Health Perspect 19: 73–81

    PubMed  CAS  Google Scholar 

  • Woolson EA (1983) Emissipns, cycling and effects of arsenic in soil ecosystems. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier, Amsterdam

    Google Scholar 

  • Wrench J, Addison RF (1981) Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta. Can J Fish Aquat Sci 38: 518–523

    CAS  Google Scholar 

  • Wrench J, Fowler SW, Unlu MY (1979) Arsenic metabolism in a marine: food chain. Mar Pol- lut Bull 10:18–20

    CAS  Google Scholar 

  • Yamamoto M (1975) Determination of arsenate, methanearsonate, and dimethylarsinate in water and sediment extracts. Soil Sci Soc Am Proc 39: 859–861

    CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1984) Metabolism and excretion of orally administered dimethyl-arsinic acid in the hamster. Toxicol Appl Pharmacol 74:134–140

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1985) Metabolism and excretion of orally administrated arsenic trioxide in the hamster. Toxicology 34: 113–121

    PubMed  CAS  Google Scholar 

  • Yasui A, Tsutsumi C, Toda S (1978) Selective determination of inorganic arsenic (III), (V) and organic arsenic in biological materials by solvent extraction - atomic absorption spectrophotometry. Agric Biol Chem 42: 2139–2145

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanck, H. et al. (1989). Advanced Hazard Assessment of Arsenic in the Swedish Environment. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics