Skip to main content

Molecular Beams and Cluster Nucleation

  • Chapter
  • 193 Accesses

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Abstract

For people working with molecular beams, the appearance of clusters due to condensation effects is detrimental since it limits the low temperature and high intensity regimes attainable with supersonic nozzle beams. Many studies have been devoted to the characterization of condensation processes in order to avoid cluster formation. On the other hand, if one is interested in the clusters themselves, molecular beams are a very rich area for the characterization of their fundamental properties [2.1,2.2]. There are several basic reasons to use molecular beams for the production and investigation of clusters: primarily the control on temperature and pressure of the gas forming the beam can produce the conditions of an efficient condensation. Moreover, clusters in molecular beams can be studied without the interference of matrices and/or substrates; their kinetic energy, in the eV range, is very interesting for a wealth of physico-chemical phenomena; their mass distribution can be controlled and they can be mass selected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.F. Hagena: in, Molecular Beams and Low Density Gas Dynamics P.P. Wegener (ed.), (Dekker, New York, 1974)

    Google Scholar 

  2. H. Haberland (ed.): Cluster of Atoms and Molecules, (Springer-Verlag, Berlin-Heidelberg, 1994)

    Google Scholar 

  3. G. Scoles (ed.): Atomic and Molecular Beam Methods, (Oxford University Press, Oxford, 1988)

    Google Scholar 

  4. N. F. Ramsey: Molecular Beams (Oxford University Press, Oxford, 1955)

    Google Scholar 

  5. P. Clausing: Ann. Phys. 12, 961 (1932)

    Article  MATH  Google Scholar 

  6. J.A. Giordamaine, T.C. Wang: J. Appl. Phys. 31, 463 (1960)

    Article  ADS  Google Scholar 

  7. D.M. Murphy: J. Vac. Sci. Technol. A7, 3075 (1989)

    ADS  Google Scholar 

  8. C.B. Lucas: Vacuum 23, 395 (1972)

    Article  Google Scholar 

  9. K.J. Ross: Rev. Sci. Instrum. 66, 4409 (1995)

    Article  ADS  Google Scholar 

  10. D.R. Miller: in ref [2.3], vol 1, p. 15

    Google Scholar 

  11. Beam Dynamics Inc, 708 East 56th Street - Minneapolis, Minnesota 55417 USA

    Google Scholar 

  12. M. Zucrow, J. Hoffman, Gas Dynamics, vols. I and II, Wiley, New York, 1976

    Google Scholar 

  13. H. Ashkenas, F.S. Sherman:4th Rarefied Gas Dynamics Symposium, 2, 784 (1966)

    Google Scholar 

  14. J.B. Anderson: AIAA J. 10, 112 (1972)

    Article  ADS  Google Scholar 

  15. J.P. Toennies, K. Winkelmann: J. Chem. Phys. 66, 3965 (1977)

    Article  ADS  Google Scholar 

  16. H. Beijering, N. Verster, Physica C 111, 327 (1981)

    Article  Google Scholar 

  17. P. Poulsen, D.R. Miller: 10-th Rarefied Gas Dynamics Symposium 2, 899 (1977)

    Google Scholar 

  18. P.C. Waterman, S.A. Stern: J. Chem. Phys. 31, 405 (1959)

    Article  ADS  Google Scholar 

  19. E.W. Becker, K. Bier, W. Bier: Z. Naturforsch. A 16, 12 (1961)

    Google Scholar 

  20. V.H. Reis, J.B. Fenn: J. Chem. Phys. 39, 3240 (1963)

    Article  ADS  Google Scholar 

  21. G.W. Israel, S.K. Friedlander: J. Colloid Interface Sci. 24, 330 (1967)

    Article  Google Scholar 

  22. J. Fernandez De La Mora, B.L. Halpern, J.A. Wilson: J. Fluid Mech. 149, 217 (1984)

    Article  ADS  Google Scholar 

  23. W.R. Gentry: in ref [2.3], vol 1, p 54

    Google Scholar 

  24. M. Volmer, A. Weber: Z. Phys. Chem. 119, 277 (1925)

    Google Scholar 

  25. J.B. Zeldovich: Acta Physicochim., U.R.S.S. 18, 1 (1943)

    Google Scholar 

  26. J. Frenkel Theory of Liquids (Oxford Univeristy Press, Oxford, 1946)

    MATH  Google Scholar 

  27. D. Turnbull: J. Chem. Phys. 18, 198 (1950)

    Article  ADS  Google Scholar 

  28. D. Turnbull: J. Chem. Phys. 20, 411 (1952)

    Article  ADS  Google Scholar 

  29. A. Laaksonen, V. Talanquer, D.W. Oxtoby: Annu. Rev. Phys. Chem. 46, 489 (1995)

    Article  ADS  Google Scholar 

  30. D.W. Oxtoby: J. Phys.: Condens. Matter 4, 7627 (1992)

    Article  ADS  Google Scholar 

  31. D.T. Wu: Solid State Phys. 50, 37 (1997).

    Article  Google Scholar 

  32. J.W. Christian: The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, 1975

    Google Scholar 

  33. R.A. Sigsbee: in Nucleation, A.C. Zettlemoyer (ed.), p.151, (Dekker, New York, 1969)

    Google Scholar 

  34. R. Rechsteiner, J.D. Ganière: Surf. Sci. 106, 125 (1981)

    Article  ADS  Google Scholar 

  35. O. Abraham, S.S. Kim, G.D. Stein: J. Chem. Phys. 75, 402 (1981), and references therein.

    Article  ADS  Google Scholar 

  36. G.D. Stein: Surf. Sci. 156, 44 (1985)

    Article  ADS  Google Scholar 

  37. B.K. Rao, B.M. Smirnov: Phys. Scr. 46, 439 (1997)

    Article  ADS  Google Scholar 

  38. R.E. Smalley: Laser Chem. 2, 167 (1991)

    Article  Google Scholar 

  39. J. Khatoun, M. Mostafavi, J. Ambland, J. Belloni: Z. Phys D 34, 47 (1995)

    Article  ADS  Google Scholar 

  40. O.F. Hagena: Surf. Sci. 106, 101 (1981)

    Article  ADS  Google Scholar 

  41. O.F. Hagena: Phys. Fluids 17, 894 (1974)

    Article  ADS  Google Scholar 

  42. O.F. Hagena, W. Obert: J. Chem. Phys. 56, 1793 (1972)

    Article  ADS  Google Scholar 

  43. H.P. Birkhofer, H. Haberland, M. Winterer, D.R. Worshop: Ber. Bunsenges. Phys. Chem. 88, 207 (1984)

    Google Scholar 

  44. O.F. Hagena: Z. Phys. D4, 291 (1987)

    ADS  Google Scholar 

  45. O.F. Hagena: in Rarefied Gas Dynamics, H. Oguchi (ed.), (University of Tokyo Press, Tokyo, 1984)

    Google Scholar 

  46. R. Weiel: Z. Phys D27, 89 (1993)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milani, P., Iannotta, S. (1999). Molecular Beams and Cluster Nucleation. In: Cluster Beam Synthesis of Nanostructured Materials. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59899-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59899-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64173-2

  • Online ISBN: 978-3-642-59899-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics