Skip to main content

The In Vitro Metabolism of Nitrovasodilators and Their Conversion into Vasoactive Species

  • Conference paper
Heart Failure Mechanisms and Management

Abstract

Despite the extensive therapeutic use of nitrovasodilators and a good knowledge of the hemodynamic alterations that lead to improved myocardial performance, until recently surprisingly few data were available concerning their mode of action at the molecular level. It is now well documented that the pharma codynamic action of these compounds is mediated by the activation of the soluble isoenzyme of guanylate cyclase (sGC; E.C. 4.6.1.2). Relaxation studies with isolated vessel preparations revealed the involvement of at least two independent mechanisms of sGC stimulation: one is an indirect endothelium-related process and the second leads to sGC stimulation on bypassing the endothelium-dependent process. Acetylcholine, ATP, and bradykinin, for example, have a vasodilatory effect only in the presence of an intact endothelial layer while nitrovasodilators such as nitrite (NO2 -), glyceryl trinitrate (GTN), or sodium nitroprusside (SNP) are relaxant agents in any case. That is why the existence of a humoral endothelium-derived relaxing factor (EDRF) which mediates sGC activation by the endothelium-dependent vasodilators had been postulated. The subsequent rise in cytosolic cGMP concentration induces a complex cascade of protein phosphorylations, finally resulting in smooth muscle relaxation [12,34].

This work was in part supported by the Deutsche Forschungsgemeinschaft (SFB 242. coronary heart disease. Düsseldorf) and by a scholarship from SK D. Göttingen, FRG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlner J, Axelsson KL, Ekstam Ljusegren M, Grundström N, Andersson RGG (1987) Demonstration of a high-affinity component of glyceryl trinitrate-induced vasodilation in the bovine mesenteric artery. J Cycl Nucl Prot Res 11: 445–456

    CAS  Google Scholar 

  2. Bennett BM, Schröder H, Hayward LD, Waldman SA, Murad F (1988) Effect of in vitro organic nitrate tolerance on relaxation, cyclic GMP accumulation and guanylate cyclase activation by glyceryl trinitrate and the enantiomers of isoidide dinitrate. Circ Res 63: 693–701

    Article  PubMed  CAS  Google Scholar 

  3. Brien JF, McLaughlin BE, Breedon TH, Bennett BM, Nakatsu K. Marks GS (1986) Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta. J Pharmacol Exp Ther 237 (2): 608–614

    PubMed  CAS  Google Scholar 

  4. Brien JF, McLaughlin BE, Kobus SM, Kawamoto JH, Nakatsu K, Marks GS (1988) Mechanism of gyceryl trinitrate-induced vasodilation. I. Relationship between drug biotransformation. tissue cyclic GMP elevation and relaxation of rabbit aorta. J Pharmacol Exp Ther 244 (I): 322–327

    PubMed  CAS  Google Scholar 

  5. Cantoni C, Bianchi MA, Beretta G (1975) Stabilita di nitrosoderivati (nitrosotioli. nitrosofenoli e nitrosoemoglobina) a pH alkalino (Ital). Ind Aliment 14 (7–8): 79–81

    CAS  Google Scholar 

  6. Doyle MP, Hoekstra JW (1981) Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J lnorg Biochem 14: 351–358

    Article  CAS  Google Scholar 

  7. Feelisch M. Noack E (1987) Nitric oxide formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142: 465–469

    Article  PubMed  CAS  Google Scholar 

  8. Feelisch M, Noack E (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139: 19–30

    Article  PubMed  CAS  Google Scholar 

  9. Feelisch M, Noack E, Schröder H (1988) Explanation of the discrepancy between the degree of organic nitrate decomposition, nitrite formation and guanylate cyclase stimulation. Eur Heart J 9 (Suppl A): 57–62

    Article  PubMed  CAS  Google Scholar 

  10. Feelisch M, Noack E (1989) Thiol-induced generation of nitric oxide (NO) accounts for the vasodilatory action of furoxans (abstr). Naunyn Schmiedebergs Arch Pharmacol 339 (Suppl): R67

    Google Scholar 

  11. Field L, Dilts RV, Ravichandran R, Lenhert PG, Carnahan GE (1978) An unusually stable thionitrite from N-acetyl-D,L-penicillamine. X-ray crystal structure of 2-(acetylamino)-2-carboxy-1,l-dimethylethyl thionitrite. J Chem Soc Chem Comm 1157: 249–252

    Article  Google Scholar 

  12. Fiscus RR, Rapoport RM, Murad F (1984) Endothelium-dependent and nitrovasodilator-in-duced activation of cyclic GMP-dependent protein kinase in rat aorta. J Cycl Nucl Prot Phosph Res 9 (6): 415–425

    CAS  Google Scholar 

  13. Fung HL, Chong S, Kowaluk E, Hough K, Kakemi M (1988) Mechanisms for the pharmacological interaction of organic nitrates with thiols. Existence of an extracellular pathway for the reversal of nitrate vascular tolerance by N-acetylcysteine. J Pharmacol Exp Ther 245 (2): 524–530

    PubMed  CAS  Google Scholar 

  14. Hafner D, Heinen E, Noack E (1977) Mathematical analysis of concentration-response relationship. Method for the evaluation of the EC50 and the number of binding sites per receptor molecule using the logit transformation. Arzneimittelforschung 27: 1871–1873

    PubMed  CAS  Google Scholar 

  15. Hart TW (1985) Some observations concerning the S-nitroso and S-phenylsulfonyl derivates of L-cysteine and glutathione. Tetrahedr Lett 26 (16): 2013–2016

    Article  CAS  Google Scholar 

  16. Haussmann HJ, Werringloer J (1987) Mechanism and control of the denitrosation of Nnitrosodimethylamine. In: Bartsch H, O’Neill IK, Schulte-Herman R (eds) Relevance of Nnitroso compounds to human cancer: exposure and mechanisms. IA RC, Lyon, pp 109–112

    Google Scholar 

  17. Hay M (1883) The chemical nature and physiological action of nitroglycerin. Practitioner 30: 422–433

    Google Scholar 

  18. Heppel LA, Hilmoe RJ (1950) Metabolism of inorganic nitrite and nitrate esters. Il. The enzymatic reduction of nitroglycerin and erythritol tetranitrate by glutathione. J Biol Chem 183: 129–138

    CAS  Google Scholar 

  19. Hillier J, Schmidt M, Rittler J (1988) Effects of sulfhydryl-containing compounds on nitroglycerin-induced coronary dilation in isolated working rat hearts. Eur J Pharmacol 156: 215–222

    Article  Google Scholar 

  20. Ignarro LJ (1989) Endothelium-derived nitric oxide:actions and properties. FASEB J 3: 31–36

    PubMed  CAS  Google Scholar 

  21. Ignarro U, Gruetter CA (1980) Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite. Possible involvement of Snitrosothiols. Biochim Biophys Acta 631: 221–231

    Article  PubMed  CAS  Google Scholar 

  22. Ignarro U, Kadowitz PJ, Baricos WH (1981) Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site SH-groups and both substrate and activator. Arch Biochem Biophys 208 (1): 75–86

    Article  PubMed  CAS  Google Scholar 

  23. Ignarro U, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218: 739–749

    PubMed  CAS  Google Scholar 

  24. Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cycl Nucl Res 3: 23–35

    CAS  Google Scholar 

  25. Keen JH, Habig WH, Jakoby WB (1976) Mechanism of the several activities of glutathione-S-transferases. J Biol Chem 251: 6183–6188

    PubMed  CAS  Google Scholar 

  26. Kelm M, Feelisch M, Spahr R, Piper HM, Noack E, Schrader J (1988) Quantitative and kinetic characterizationof nitric oxide and EDRF from cultured endothelial cells. Biochem Biophys Res Commun 154 (1): 236–244

    Article  PubMed  CAS  Google Scholar 

  27. Kimura H, Mittal CK, Murad F (1975) Activation of guanylate cyclase from rat liver and other tissues by sodium azide. J Biol Chem 250 (20): 8016–8022

    PubMed  CAS  Google Scholar 

  28. Kukovetz WR, Holzmann S (1986) Mode of action of nitrates with regard to vasodilation and tolerance. Z Kardiol 75 (Suppl 3): 8–11

    PubMed  CAS  Google Scholar 

  29. Kuropteva ZV, Pastushenko ON (1985) Change in paramagnetic blood and liver complexes in animals under the influence of nitroglycerin (Russ). Dokl Akad Nauk SSSR 281 (1): 189–192

    PubMed  CAS  Google Scholar 

  30. Leuenberger U, Gauch R, Rieder K, Baumgartner E (1980) Determination of nitrate and bromide in foodstuffs by high-performance liquid chromatography. J Chromatogr 202: 461–468

    Article  CAS  Google Scholar 

  31. Mima A, Hofmann K (1969) Über den Verbleib von Nitrit in Fleischwaren. I. Umsetzung von Nitrit mit Sulfhydrylverbindungen. Fleischwirtschaft 10: 1361–1366

    Google Scholar 

  32. Moncada S, Palmer RMJ, Higgs EA (1988) The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 12: 365–372

    Article  PubMed  CAS  Google Scholar 

  33. Mülsch A, Busse R, Bassenge E (1988) Desensitization of guanylate cyclase in nitrate tolerance does not impair endothelium-dependent responses. Eur J Pharmacol 158: 191–198

    Article  PubMed  Google Scholar 

  34. Murad F (1987) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78: 1–5

    Article  Google Scholar 

  35. Needleman P. Johnson EM (1975) The pharmacological and biochemical interaction of organic nitrates with sulfhydryls: possible correlations with the mechanism of tolerance development. vasodilation and mitochondrial and enzyme reactions. In: Needleman P (ed) Handbook of experimental pharmacology, vol 40. Springer. Berlin Heidelberg New York, pp 97–1 14

    Google Scholar 

  36. Parks NJ, Krohn KA. Mathis CA, Chasko JH, Geiger KR, Gregor ME, Peek NF (1981) Nitrogen-13-labeled nitrite and nitrate: distribution and metabolism after intratracheal administration. Science 212 (3): 58–61

    Article  PubMed  CAS  Google Scholar 

  37. Romanin C, Kukovetz WR (1988) Guanylate cyclase activation by organic nitrates is not mediated via nitrite. J Mol Cell Cardiol 20:389–396

    Article  PubMed  CAS  Google Scholar 

  38. Slack CJ. McLaughlin BE, Nakatsu K, Marks GS, Brien JF (1988) Nitric oxide-induced vasodilation of organic nitrate-tolerant rabbit aorta. Can J Physiol Pharmacol 66: 1344–1346

    Article  PubMed  CAS  Google Scholar 

  39. Steurer G, Schütz W (1984) Guanylate cyclase stimulation by nitro-compounds is dependent on free Ca. Experientia 40: 970–971

    Article  PubMed  CAS  Google Scholar 

  40. Tsuruta H. Hasegawa H (1970) Studies on nitroglycol poisoning — On some properties of an enzyme which decomposes nitroglycol into inorganic nitrate. Ind Health 8: 99–118

    Article  CAS  Google Scholar 

  41. Tsuruta H, Hasegawa H (1970) Studies on nitroglycol poisoning — Decomposition mechanism of nitroglycol by nitrite forming enzyme. Ind Health 8: 119–140

    Article  CAS  Google Scholar 

  42. Waldman SA, Rapoport RM, Ginsburg R, Murad F (1986) Desensitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol 35 (20): 3525–3531

    Article  PubMed  CAS  Google Scholar 

  43. Yeates RA, Laufen, H Leitold M (1985) The reaction between organic nitrates and sulfhydryl compounds — A possible model system for the activation of organic nitrates. Mol Pharmacol 28: 555–559

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feelisch, M., Noack, E. (1991). The In Vitro Metabolism of Nitrovasodilators and Their Conversion into Vasoactive Species. In: Lewis, B.S., Kimchi, A. (eds) Heart Failure Mechanisms and Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58231-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58231-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63509-0

  • Online ISBN: 978-3-642-58231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics