Skip to main content

Part of the book series: Perspectives in Antisense Science ((BSPS,volume 139))

  • 367 Accesses

Abstract

The notion of intermolecular potentials is based on separability at two different levels. The Born-Oppenheimer separation between electronic and nuclear motions prescribes the use of the electronic energy surface as the potential energy for the nuclear motions. The nuclear motions can be separated into internal molecular motions, i.e. molecular vibrations, and external motions, i.e. (relative) translations and rotations of whole molecules. The latter separation follows from the shape of the potential energy surface, which is determined by the nature of the interactions involved. Molecules are kept together by “chemical”, mainly covalent, bonds between the atoms, which, for neutral molecules, are considerably stronger than the intermolecular interactions. For molecular ions the intermolecular Coulomb interaction energies are equally large as the intramolecular covalent binding energies, but even in this case the steep distance dependence and strong directionality of the covalent bonds make the potential energy surface depend most sensitively on the internal molecular coordinates. So there is a clear separation between internal molecular coordinates and external ones. Molecules are recognizable by their electronic and vibrational spectra; the intermolecular interactions cause (slight) modifications of these spectra (line shifts, splittings, broadening). This separation becomes less distinct for larger molecules which are often flexible in some of their internal coordinates. The motions along those specific coordinates will be strongly influenced by intermolecular interactions and coupled to the overall motions of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Avoird A, Wormer PES, Mulder F, Berns RM (1980) Topics Curr. Chem. 93: 1

    Google Scholar 

  2. Kaplan IG (1986) Theory of molecular interactions. North Holland, Amsterdam

    Google Scholar 

  3. van Lenthe JH, van Duijneveldt-van de Rijdt JCGM, van Duijeneveldt FB (1987) Advan. Chem. Phys. 69: 521

    Google Scholar 

  4. Hobza P, Zahradnik R (1988) Intermolecular complexes. Elsevier, Amsterdam

    Google Scholar 

  5. Chalasiński G, Gutowski M (1988) Chem. Rev. 88: 943

    Google Scholar 

  6. Buckingham AD, Fowler PW, Hutson JM (1988) Chem. Rev. 88: 963

    CAS  Google Scholar 

  7. Stone AJ (1989) in: Maksic ZB (ed) Theoretical models of chemical bonding. Springer, Berlin, part 4, chapter 6

    Google Scholar 

  8. Rijks W, Wormer PES (1989) J. Chem. Phys. 90: 6507, and references therein

    CAS  Google Scholar 

  9. Rijks W, van Heeringen M, Wormer PES (1989) J. Chem. Phys. 90: 6501

    CAS  Google Scholar 

  10. Chipman DM, Hirschfelder JO (1973) J. Chem. Phys. 59: 2830, 2838

    CAS  Google Scholar 

  11. Jeziorski B, Kolos W (1977) Int. J. Quantum Chem. 12 Suppl. 1: 91

    Google Scholar 

  12. Rijks W, Gerritsen M, Wormer PES (1989) Mol. Phys. 66: 929

    CAS  Google Scholar 

  13. Douketis C, Scoles G, Marchetti S, Zen M, Thakkar AJ (1982) J. Chem. Phys. 76: 3057

    CAS  Google Scholar 

  14. Tang KT, Toennies JP (1984) J. Chem. Phys. 80: 3726

    CAS  Google Scholar 

  15. Knowles PJ, Meath WJ (1987) Mol. Phys. 60: 1143

    CAS  Google Scholar 

  16. Matsen FA, Klein DJ, Foyt DC (1971) J. Phys. Chem. 75: 1866

    CAS  Google Scholar 

  17. Western CM, Langridge-Smith PRR, Howard BJ (1981) Mol. Phys. 44: 145

    CAS  Google Scholar 

  18. Brechignac Ph, De Benedictis S, Halberstadt N, Whitaker BJ (1985) J. Chem. Phys. 83: 2064

    CAS  Google Scholar 

  19. Wormer PES, van der Avoird A, (1984) J. Chem. Phys. 81: 1929

    CAS  Google Scholar 

  20. Miller RE (1988) Science 240: 447

    CAS  Google Scholar 

  21. Faubel M (1983) Advan. At. Mol. Phys. 19: 345

    CAS  Google Scholar 

  22. Buck U, Huisken F, Schleusener J (1980) J. Chem. Phys. 72: 1512

    CAS  Google Scholar 

  23. Bergmann K, Hefter U, Witt J (1980) J. Chem. Phys. 72: 4777

    CAS  Google Scholar 

  24. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  25. Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolekular forces. Clarendon, Oxford

    Google Scholar 

  26. Gray CG, Gubbins KE (1984) Theory of molecular fluids. Clarendon, Oxford

    Google Scholar 

  27. Briels WJ, Jansen APJ, van der Avoird A (1986) Adv. Quantum Chem. 18: 131

    CAS  Google Scholar 

  28. Brink DM, Satchler GR (1975) Angular momentum. Clarendon, Oxford

    Google Scholar 

  29. Le Roy RJ, Hutson JM (1987) J. Chem. Phys. 86: 837

    Google Scholar 

  30. Le Roy RJ, Carley JS (1980) Advan. Chem. Phys. 42: 353

    Google Scholar 

  31. Berns RM, van der Avoird A (1980) J. Chem. Phys. 72: 6107

    CAS  Google Scholar 

  32. van der Avoird A, Wormer PES, Jansen APJ (1986) J. Chem. Phys. 84: 1629

    Google Scholar 

  33. Wasiutynski T, van der Avoird A, Berns RM (1978) J. Chem. Phys. 69: 5288

    CAS  Google Scholar 

  34. Pertsin AJ, Kitaigorodsky AI (1987) The atom-atom potential method for organic molecular solids. Springer, Berlin

    Google Scholar 

  35. Hair SR, Beswick JA, Janda KC (1988) J. Chem. Phys. 89: 3970

    CAS  Google Scholar 

  36. Claverie P (1978) in: Pullman B (ed) Intermolecular interactions: From diatomics to biopolymers, Wiley, New York, p 69

    Google Scholar 

  37. Rullman JAC, van Duijnen PTh (1988) Mol. Phys. 63: 451

    Google Scholar 

  38. Gay JG, Berne BJ (1981) J. Chem. Phys. 74: 3316

    CAS  Google Scholar 

  39. Stone AJ, Price SL (1988) J. Phys. Chem. 92: 3325

    CAS  Google Scholar 

  40. Fuchikama N, Block R (1982) Physica B 112: 369

    Google Scholar 

  41. Jansen APJ, van der Avoird A (1987) J. Chem. Phys. 86: 3583

    CAS  Google Scholar 

  42. Margenau H, Kestner NR (1971) Theory of intermolecular forces, 2nd edn. Pergamon, New York

    Google Scholar 

  43. Meath WJ, Aziz RA (1984) Mol. Phys. 52: 225

    CAS  Google Scholar 

  44. Loubeyre P (1987) Phys. Rev. Lett. 58: 1857

    CAS  Google Scholar 

  45. Bulski M (1989) in: Polian et al. (ed) Simple molecular systems at very high density. Plenum, New York

    Google Scholar 

  46. Bulski M, Chalasiński (1987) J. Chem. Phys. 86: 937

    CAS  Google Scholar 

  47. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford

    Google Scholar 

  48. Cochran W (1971) CRC Critical reviews in solid state science 2: 1

    CAS  Google Scholar 

  49. Jansen APJ, Briels WJ, van der Avoird A (1984) J. Chem. Phys. 81: 3648

    CAS  Google Scholar 

  50. van der Avoird A, Briels WJ, Jansen APJ (1984) J. Chem. Phys. 81: 3658

    Google Scholar 

  51. Briels WJ, Jansen APJ, van der Avoird A (1984) J. Chem. Phys. 81: 4118

    CAS  Google Scholar 

  52. Jansen APJ (1988) J. Chem. Phys. 88: 1914

    CAS  Google Scholar 

  53. Jansen APJ, Schoorl R (1988) Phys. Rev. B38: 11711

    Google Scholar 

  54. Jansen APJ, van der Avoird A (1987) J. Chem. Phys. 86: 3597

    CAS  Google Scholar 

  55. Jansen APJ (1986) Phys. Rev. B33: 6352

    Google Scholar 

  56. Jansen APJ (1988) J. Phys. C: Solid State Phys. 21: 4221

    CAS  Google Scholar 

  57. Janssen WBJM, van der Avoird A (1990) Phys. Rev. B in press

    Google Scholar 

  58. van den Berg THM, van der Avoird A (1989) J. Phys. Condensed Matter, 1: 4047

    Google Scholar 

  59. Jongenelis APJM, van den Berg THM, Jansen APJ, Schmidt J, van der Avoird A (1988) J. Chem. Phys. 89: 4023

    CAS  Google Scholar 

  60. Jongenelis APJM, van der Berg THM, Schmidt J, van der Avoird A (1989) J. Phys. Condensed Matter, 1: 5051

    CAS  Google Scholar 

  61. Maradudin AA, Vosko SH (1968) Rev. Mod. Phys. 40: 1

    CAS  Google Scholar 

  62. Maradudin AA, Montroll EW, Weiss GH, Ipatova P (1971) Theory of lattice dynamics in the harmonic approximation, Academic Press, New York

    Google Scholar 

  63. Maradudin AA (1974) in: Horton GK, Maradudin AA (ed) Dynamical properties of solids, Vol. 1, North Holland, Amsterdam, p 1

    Google Scholar 

  64. Califano S, Schettino V, Neto N (1981) Lattice dynamics of molecular crystals, Lecture notes in Chemistry, Vol. 26, Springer, Berlin

    Google Scholar 

  65. Barron THK, Klein ML (1974) in: Horton GK, Maradudin AA (ed) Dynamical properties of solids, Vol. 1, North Holland, Amsterdam, p 391

    Google Scholar 

  66. Girardeau MD, Mazo RM (1973) Advan. Chem. Phys. 24: 187

    CAS  Google Scholar 

  67. Feynman RP (1972) Statistical mechanics, Benjamin, Reading, Massachusetts

    Google Scholar 

  68. Löwdin PO (1988) Int. J. Quantum Chem. Symp. 22: 337

    Google Scholar 

  69. Neto N, Kirin D (1979) Chem. Phys. 44: 245

    CAS  Google Scholar 

  70. Taddei G, Bonadeo H, Marzocchi MP, Califano S (1973) J. Chem. Phys. 58: 966

    CAS  Google Scholar 

  71. Werthamer NR (1976) in: Klein ML, Venables J (ed) Rare gas solids, Vol. 1, Academic Press, London

    Google Scholar 

  72. Wasiutynski T (1976) Phys. Status Solidi B76: 175

    Google Scholar 

  73. Hansen JP, McDonald IR (1976). Theory of simple liquids, Academic Press, New York

    Google Scholar 

  74. Kirkwood JG (1940) J. Chem. Phys. 8: 205

    CAS  Google Scholar 

  75. James HM, Keenan TA (1959) J. Chem. Phys. 31: 12

    CAS  Google Scholar 

  76. Raich JC (1972) J. Chem. Phys. 56: 2395

    CAS  Google Scholar 

  77. Raich JC, Etters RD (1968) Phys. Rev. 168, 425

    CAS  Google Scholar 

  78. Dunmore PV (1972) J. Chem. Phys. 57: 3348

    CAS  Google Scholar 

  79. Fredkin DR, Werthamer NR (1965) Phys. Rev. A138: 1527

    Google Scholar 

  80. Hüller A (1974) Phys. Rev. B10: 4403

    Google Scholar 

  81. Scott TA (1976) Phys. Rep. 27: 89

    Google Scholar 

  82. Kjems JK, Dolling G (1975) Phys. Rev. Bl1: 1639

    Google Scholar 

  83. Raich JC, Gillis NS (1977) J. Chem. Phys. 66: 846

    CAS  Google Scholar 

  84. Luty T, van der Avoird A, Berns RM (1980) J. Chem. Phys. 73: 5305

    CAS  Google Scholar 

  85. Kjems JK, Dolling G (1981) Phys. Rev. B24: 2967

    Google Scholar 

  86. Heberlein DC, Adams ED, Scott TA (1970) J. Low Temp. Phys. 2: 449

    CAS  Google Scholar 

  87. van den Berg THM, Bongers MMG, van der Avoird A (1990) to be published

    Google Scholar 

  88. DeFotis GC (1981) Phys. Rev. B23: 4714 and references therein

    Google Scholar 

  89. Kobashi K, Klein ML, Chandrasekharan V (1979) J. Chem. Phys. 71: 843

    CAS  Google Scholar 

  90. Etters RD, Helmy AA, Kobashi K (1983) Phys. Rev. B28: 2166

    Google Scholar 

  91. Kuchta B (1985) Chem. Phys. 95: 391

    CAS  Google Scholar 

  92. Bier KD, Jodl HJ (1984) J. Chem. Phys. 81: 1192

    CAS  Google Scholar 

  93. Silvera IF (1980) Rev. Mod. Phys. 52: 393

    CAS  Google Scholar 

  94. Silvera IF (1989) in: Polian et al. (ed) Simple molecular systems at very high density, Plenum, New York

    Google Scholar 

  95. van Kranendonk J (1985) Solid hydrogen, Plenum, New York

    Google Scholar 

  96. Klein ML, Koehler R (1970) J. Phys. C3: L102

    Google Scholar 

  97. England W, Raich JC, Etters RD (1976) J. Low Temp. Phys. 22: 213

    CAS  Google Scholar 

  98. Lagendijk A, Silvera IF (1981) Phys. Lett. 84A: 28

    CAS  Google Scholar 

  99. Schäfer J, Köhler W (1989) Z. Physik D13: 217

    Google Scholar 

  100. Silvera IF, Wijngaarden RJ (1981) Phys. Rev. Lett. 47: 39

    CAS  Google Scholar 

  101. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations, McGraw-Hill, New York

    Google Scholar 

  102. Califano S (1976) Vibrational states, Wiley, London

    Google Scholar 

  103. Chaplot SL, Mierzejewski A, Pawley GS, Lefebvre J, Luty T (1983) J. Phys. C: Solid State Phys. 16: 625

    CAS  Google Scholar 

  104. Abramson EH, Jongenelis APJM, Schmidt J (1987) J. Chem. Phys. 87: 3719

    CAS  Google Scholar 

  105. Kopelman R (1976) in: Lim EC (ed) Excited states, Vol. 2, Academic Press, New York, p 33

    Google Scholar 

  106. Economou EN (1983) Green’s functions in quantum physics, 2nd ed., Springer, Berlin, Chap. 7

    Google Scholar 

  107. Bellows JC, Prasad PN, Monberg EM, Kopelman R (1978) Chem. Phys. Lett. 54: 439

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Avoird, A. (1991). Intermolecular Forces and the Properties of Molecular Solids. In: Maksić, Z.B. (eds) Theoretical Treatment of Large Molecules and Their Interactions. Perspectives in Antisense Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58183-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58183-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63495-6

  • Online ISBN: 978-3-642-58183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics