Skip to main content

Part of the book series: Algorithms and Combinatorics ((AC,volume 10))

Abstract

In this chapter we study the combinatorial structure of arrangements of algebraic curves or surfaces in low-dimensional Euclidean space. Such arrangements arise in many geometric problems, as will be exemplified below. To introduce the class of problems we will be interested in, we begin with the following concrete example, taken from the theory of motion planning in robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agarwal and B. Aronov: Counting facets and incidences. Discrete Comput. Geom. 7 (1992) 359–369

    MathSciNet  MATH  Google Scholar 

  2. P. Agarwal, M. Sharir and P. Shor: Sharp upper and lower bounds for the length of general Davenport-Schinzel sequences. J. Combin. Theory, Ser. A 52 (1989) 228–274

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Aronov, H. Edelsbrunner, L. Guibas and M. Sharir: Improved bounds on the complexity of many faces in arrangements of segments. Combinatorica (in press)

    Google Scholar 

  4. B. Aronov and M. Sharir: Triangles in space, or building (and analyzing) castles in the air. Combinatorica 10 (1990) 137–173

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Atallah: Some dynamic computational geometry problems. Comp. and Math. with Appls. 11 (1985) 1171–1181

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Aurenhammer: Power diagrams: Properties, algorithms, and applications. SIAM J. Comput. 16 (1987) 78–96

    MathSciNet  MATH  Google Scholar 

  7. C. Bajaj: Geometric modeling with algebraic surfaces. The Mathematics of Surfaces, III (D. Handscomb, ed.). Oxford Univ. Press, 1989, pp. 3–48

    Google Scholar 

  8. A. Baltsan and M. Sharir: On shortest paths between two convex polyhedra. J. ACM 35 (1988) 267–287

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bentley and T. Ottmann: Algorithms for reporting and counting geometric intersections. IEEE Trans. Computers C-28 (1979) 643–647

    Article  Google Scholar 

  10. R. Canham: A theorem on arrangements of lines in the plane. Israel J. Math. 7 (1969) 393–397

    MathSciNet  MATH  Google Scholar 

  11. B. Chazelle: The polygon containment problem. In: Advances in Computing Research, Vol. I: Computational Geometry (F.P. Preparata, Ed.), JAI Press, Greenwich, Connecticut (1983), pp. 1–33

    Google Scholar 

  12. B. Chazelle and J. Friedman: A deterministic view of random sampling and its use in geometry. Combinatorica 10 (1990) 229–249

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Chazelle and H. Edelsbrunner: An optimal algorithm for intersecting line segments in the plane. J. ACM 39 (1992) 1–54

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Chazelle, H. Edelsbruner, L. Guibas, and M. Sharir: A singly exponential stratification scheme for real semi-algebraic varieties and its applications. Proc. 16th Int. Colloq. on Automata, Languages, and Programming 1989, pp. 179–193. Also in: Theoretical Computer Science 84 (1991) 77–105

    Google Scholar 

  15. B. Chazelle, H. Edelsbruner, L. Guibas, and M. Sharir: Lines in space — combinatorics, algorithms, and applications. Proc. 21st ACM Symp. on Theory of Computing 1989, pp. 568–579

    Google Scholar 

  16. B. Chazelle, L. Guibas and D.T. Lee: The power of geometric duality. BIT 25 (1985) 76–90

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Chazelle and D.T. Lee: On a circle placement problem. Computing 36 (1986) 1–16

    Article  MathSciNet  MATH  Google Scholar 

  18. L.P. Chew and K. Kedem: Placing the largest similar copy of a convex polygon among polygonal obstacles. Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 167–174

    Google Scholar 

  19. K.L. Clarkson: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2 (1987) 195–222

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5 (1990) 99–160

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Clarkson and P. Shor: Applications of random sampling in computational geometry II. Discrete Comput. Geom. 4 (1989) 387–421

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Cole and M. Sharir: Visibility problems for polyhedral terrains. J. Symbolic Computation 7 (1989) 11–30

    Article  MathSciNet  Google Scholar 

  23. G.E. Collins: Qunatifier elimination for real closed fields by cylindric algebraic decomposition. 2nd GI Conf. Aut. Theory and Formal Lang., Springer-Verlag, LNCS 33, Berlin (1975) 134–183

    Google Scholar 

  24. H. Davenport: A combinatorial problem connected with differential equations, II. Acta Arithmetica 17 (1971) 363–372

    MathSciNet  MATH  Google Scholar 

  25. H. Davenport and A. Schinzel: A combinatorial problem connected with differential equations. Amer. J. Math. 87 (1965) 684–694

    Article  MathSciNet  MATH  Google Scholar 

  26. L. De Floriani, B. Falcidieno, C. Pienovi, D. Allen and G. Nagy: A visibility-based model for terrain features. Proc. Int. Symp. on Spatial Data Handling, Seattle, July 1986

    Google Scholar 

  27. H. Edelsbrunner: The upper envelope of piecewise linear functions: Tight bounds on the number of faces. Discrete Comput. Geom. 4 (1989) 337–343

    MathSciNet  MATH  Google Scholar 

  28. H. Edelsbrunner and L. Guibas: Topologically sweeping an arrangement. J. Comp. and System Sciences, 38 (1989) 165–194

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir: Arrangements of curves in the plane: Topology, combinatorics and algorithms. Theoretical Computer Science 92 (1992) 319–336

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Edelsbrunner, L. Guibas and M. Sharir: The complexity and construction of many faces in arrangements of lines and of segments. Discrete Comput. Geom. 5 (1990) 161–196

    MathSciNet  MATH  Google Scholar 

  31. H. Edelsbrunner, L. Guibas and M. Sharir: The upper envelope of piecewise linear functions: Algorithms and applications. Discrete Comput. Geom. 4 (1989) 311–336

    MathSciNet  MATH  Google Scholar 

  32. H. Edelsbrunner, L. Guibas and M. Sharir: The complexity of many cells in arrangements of planes and related problems. Discrete Comput. Geom. 5 (1990) 197–216

    MathSciNet  MATH  Google Scholar 

  33. H. Edelsbrunner, J. O’Rourke and R. Seidel: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Computing 15 (1986) 341–363

    MathSciNet  MATH  Google Scholar 

  34. P. Erdös: On sets of distances of n points. Amer. Math. Monthly 53 (1946) 248–250

    Article  MATH  Google Scholar 

  35. P. Erdös: On sets of distances of n points in euclidean space. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 165–168

    MATH  Google Scholar 

  36. L.J. Guibas and J. Stolfi: Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graphics 4 (1985) 74–123

    Article  MATH  Google Scholar 

  37. L. Guibas, M. Sharir and S. Sifrony: On the general motion planning problem with two degrees of freedom. Discrete Comput. Geom. 4 (1989) 491–521

    MathSciNet  MATH  Google Scholar 

  38. D. Halperin and M. Sharir: Improved combinatorial bounds and efficient techniques for certain motion planning problems with three degrees of freedom. Computational Geometry: Theory and Applications 1 (1992) 269–303

    MathSciNet  MATH  Google Scholar 

  39. S. Hart and M. Sharir: Nonlinearity of Davenport—Schinzel sequences and of generalized path compression schemes. Combinatorica 6 (1986) 151–177

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Hershberger: Finding the upper envelope of n line segments in O(n log n) time. Inf. Proc. Letters 33 (1989) 169–174

    MathSciNet  MATH  Google Scholar 

  41. D. Haussler and E. Welzl: e-nets and simplex range queries. Discrete Comput. Geom. 2 (1987) 127–151

    MathSciNet  MATH  Google Scholar 

  42. K. Kedem, R. Livne, J. Pach and M. Sharir: On the union of Jordan regions and collision—free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1 (1986) 59–71

    MathSciNet  MATH  Google Scholar 

  43. K. Kedem and M. Sharir: An efficient motion planning algorithm for a convex polygonal object in 2-dimensional polygonal space. Discrete Comput. Geom. 5 (1990) 43–75

    MathSciNet  MATH  Google Scholar 

  44. D. Leven and M. Sharir: On the number of critical free contacts of a convex polygonal object moving in 2-dimensional polygonal space. Discrete Comput. Geom. 2 (1987) 255–270

    MathSciNet  MATH  Google Scholar 

  45. D. Leven and M. Sharir: An efficient and simple motion planning algorithm for a ladder moving in two-dimensional space amidst polygonal barriers. J. Algorithms 8 (1987) 192–215

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Matoušek: Construction of epsilon nets. Discrete Comput. Geom. 5 (1990) 427–448

    MATH  Google Scholar 

  47. J. Matoušek: Cutting hyperplane arrangements. Discrete Comput. Geom. 6 (1991) 385–406

    MATH  Google Scholar 

  48. M. McKenna: Worst-case optimal hidden-surface removal. ACM Trans. Graphics 6 (1987) 19–28

    Article  Google Scholar 

  49. C. Ó’Dúnlaing, M. Sharir and C.K. Yap: Generalized Voronoi diagrams for a ladder: II. Efficient construction of the diagram. Algorithmica 2 (1987) 27–59

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Pach and M. Sharir: The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: Combinatorial analysis. Discrete Comput. Geometry 4 (1989) 291–309

    MathSciNet  MATH  Google Scholar 

  51. J. Pach and M. Sharir: On vertical visibility in arrangements of segments and the queue size in the Bentley-Ottmann line sweeping algorithm. SIAM J. Computing 20 (1991) 460–470

    MathSciNet  MATH  Google Scholar 

  52. M. Pellegrini: Stabbing and ray-shooting in 3-dimensional space. Proc. 6th ACM Symp. on Computational Geometry, 1990, pp. 177–186

    Google Scholar 

  53. R. Pollack, M. Sharir and S. Sifrony: Separating two simple polygons by a sequence of translations. Discrete Comput. Geom. 3 (1988) 123–136

    Article  MathSciNet  MATH  Google Scholar 

  54. F.P. Preparata and D.E. Muller: Finding the intersection of n half spaces in time O(n log n). Theoretical Computer Science 8 (1979) 44–55

    Article  MathSciNet  Google Scholar 

  55. J.T. Schwartz and M. Sharir: On the two-dimensional Davenport-Schinzel problem. J. Symbolic Computation 10 (1990) 371–393

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Sharir: Almost linear upper bounds on the length of general Davenport-Schinzel sequences. Combinatorica 7 (1987) 131–143

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Sharir: Improved lower bounds on the length of Davenport-Schinzel sequences. Combinatorica 8 (1988) 117–124

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Sharir and R. Livne: On Minima of Functions, Intersection Patterns of Curves, and Davenport-Schinzel Sequences. Proc. 26th IEEE Symp. on Foundations of Computer Science, 1985, pp. 312–320

    Google Scholar 

  59. P. Shor: Simplified geometric realizations of superlinear Davenport-Schinzel sequences. Manuscript 1990

    Google Scholar 

  60. S. Sifrony and M. Sharir: An efficient motion planning algorithm for a rod moving in two-dimensional polygonal space. Algorithmica 2 (1987) 367–402

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Spencer, E. Szemerédi and W. Trotter: Unit distances in the Euclidean plane. In: Graph Theory and Combinatorics (Proc. Cambridge Conf. on Combinatorics, B. Bollobas, ed.), 293–308, Academic Press, 1984

    Google Scholar 

  62. E. Szemerédi: On a problem by Davenport and Schinzel. Acta Arithmetica 25 (1974) 213–224

    MATH  Google Scholar 

  63. E. Szemerédi and W. Trotter: Extremal problems in discrete geometry. Combinatorica 3 (1983) 381–392

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Wiernik and M. Sharir: Planar realization of non-linear Davenport-Schinzel sequences by segments. Discrete Comput. Geom. 3 (1988) 15–47

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guibas, L., Sharir, M. (1993). Combinatorics and Algorithms of Arrangements. In: Pach, J. (eds) New Trends in Discrete and Computational Geometry. Algorithms and Combinatorics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58043-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58043-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55713-5

  • Online ISBN: 978-3-642-58043-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics