Skip to main content

Toward Generalized Finite Element Difference Methods for Electro- and Magnetostatics

  • Conference paper
Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 4))

Abstract

The paper explores a class of “Finite Element Difference” (FED) schemes with Finite Difference-type data structures but based on Finite Element — variational principles. Curved material boundaries are approximated algebraically on relatively coarse regular rectangular or hexahedral grids by a judicious choice of local approximating functions, rather than geometrically on conforming meshes. The grids do not have to resolve small geometric details. The proposed approach combines the ideas of the Generalized Finite Element — Partition of Unity methods, Discontinuous Galerkin Methods and Finite Difference / Finite Volume / Finite Integration Techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, Douglas N., Brezzi, F., Cockburn, B. and Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Analysis 39, No.5 (2002), 1749–1779.

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska I, Caloz G., Osborn J.E.: Special finite-element methods for a class of 2nd-order elliptic problems with rough coefficients, SIAM Journal on Numerical Analysis, 31, No. 4 (1994), 945–981.

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska I., Melenk, J.M.: The partition of unity method, International Journal for Numerical Methods in Eng., 40, No. 4, (1997) 727–758.

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, N.A., Sept, D., Simpson, J., Holst, M.J., and McCammon, J.A.: Electrostatics of nanosystems: Application to microtubules and the ribosome, PNAS, 98, No. 18, (2001), 10037–10041, www.pnas.org/cgi/doi/10.1073/pnas.181342398/cgi/doi/10.1073/pnas.181342398

    Article  Google Scholar 

  5. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, 139, No. 1-4, (1996), 3–47.

    Article  MATH  Google Scholar 

  6. Bossavit, Alain: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, San Diego: Academic Press, 1998.

    Google Scholar 

  7. Bossavit, A., Kettunen, L.: Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches, IEEE Trans. Magn. 36, (2000), 861–867.

    Article  Google Scholar 

  8. Bottasso C.L., Micheletti S, Sacco R, The discontinuous Petrov-Galerkin method for elliptic problems, Computer Methods in Applied Mechanics and Engineering, 191, No. 31, 3391–3409, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C.: Poincare-Friedrichs inequalities for piecewise H1 functions, Research Report 2002:01, Department of Mathematics, University of South Carolina (to appear in SIAM Journal on Numerical Analysis).

    Google Scholar 

  10. Briggs, E. L., Sullivan, D. J., and Bernholc, J. Real-space multigrid-based approach to large-scale electronic structure calcula-tions, Physical Review B, 54 (1996), No. 20, 14362–14375.

    Google Scholar 

  11. Castillo P., Cockburn, B., Perugia, I., and Schöotzau, D.: An a priori error analysis of the local discontinuous galerkin method for elliptic problems, SIAM J. Numer. Analysis 38, No.5, (2000), 1676–1706.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G., The finite element method for elliptic problems, Amsterdam; New York: North-Holland Pub. Co. 1980.

    Google Scholar 

  13. Clemens, M, Weiland, T.: Magnetic field simulation using Conformai FIT formulations, IEEE Trans Magn. 38, No. 2 (2002), 389–392.

    Article  Google Scholar 

  14. Cockburn, B., Karniadakis, G.E., and Shu, C.-W., The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods. Theory, Computation and Applications, B. Cockburn, G.E. Karniadakis, and C.-W. Shu, eds., Lecture Notes in Comput. Sci. Engrg. 11, Springer-Verlag, New York (2000), 3–50.

    Google Scholar 

  15. Collatz, Lothar, The numerical treatment of differential equations, New York: Springer, 1966.

    Google Scholar 

  16. Cortis, C.M., Friesner, R.A.: Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes, Journal of Computational Chemistry, 18, No. 13, (1997), 1591–1608.

    Article  Google Scholar 

  17. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equation, RAIRO Anal. Numer. 7, R-3 (1973), 33–76. MR 49:8401.

    MathSciNet  Google Scholar 

  18. Dey, S., Mittra, R.: A conformai finite-difference time-domain technique for modeling cylindrical dielectric resonators, IEEE Transactions on Microwave Theory and Techniques, 47 (1999), No. 9, 1737–1739.

    Article  Google Scholar 

  19. Dolejsi, V, Feistauer, M, Felcman, J.: On the discrete Friedrichs inequality for nonconforming finite elements, Numerical Functional Analysis and Optimization, 20 (1999), No. 5–6, 437–447.

    Article  MathSciNet  MATH  Google Scholar 

  20. Duarte, C.A., Babuska, L., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems, Computers & Structures, 77 (2000), No. 2, 215–232.

    Article  MathSciNet  Google Scholar 

  21. Fogolari, F., Esposito, G., Viglino, P., Molinari, H.: Molecular mechanics and dynamics of biomolecules using a solvent continuum model, Journal of Computational Chemistry, 22 (2001), No.15, 1830–1842.

    Article  Google Scholar 

  22. Hiptmair, R.: Discrete Hodge operators, Numer. Math. 90 (2001), 265–289.

    Article  MathSciNet  MATH  Google Scholar 

  23. Knobloch, P.: Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces, Numerical Functional Analysis and Optimization, 22 (2001), No. 1, 107–126.

    Article  MathSciNet  MATH  Google Scholar 

  24. Krietenstein, B., Schuhmann, R., Thoma, P., Weiland T.: The perfect boundary approximation technique facing the big challenge of high precision field computation, Proceedings of the XIX International Linear Accelerator Conference (LINAC 98), Chicago, USA (1998), 860–862.

    Google Scholar 

  25. Mattiussi, C.: An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology, Journal of Computational Physics 133 (1997), No. 2, 289–309.

    Article  MathSciNet  MATH  Google Scholar 

  26. Meguid, S.A., Zhu, Z.H.: A novel fnite element for treating inhomogeneous solids. International Journal for Numerical Methods in Engineering, 38 (1995), 1579–1592.

    Article  MATH  Google Scholar 

  27. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996), 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  28. Moskow, S., Druskin, V., Habashy, T., Lee, P., Davydycheva, S.: A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces, SIAM J. on Numerical Analysis, 36 (1999), No. 2, 442–464.

    Article  MathSciNet  Google Scholar 

  29. Oden, J. T., Babuska, I., and Baumann, C.E.: A discontinuous hp finite element method for diffusion problems, Journal of Com-putational Physics, 146 (1998), 491–519.

    Article  MathSciNet  MATH  Google Scholar 

  30. Plaks, A., Tsukerman, I., Painchaud, S., and Tabarovsky, L.: Multigrid methods for open boundary problems in geophysics, IEEE Trans. Magn., 36 (2000), No. 4, p.633–636.

    Article  Google Scholar 

  31. Plaks, A., Tsukerman, I, Friedman, G., Yellen, B.: Generalized Finite Element Method for magnetized nanoparticles, to appear in IEEE Trans. Magn., May 2003.

    Google Scholar 

  32. Proekt, L., Tsukerman I.: Method of overlapping patches for electromagnetic computation, IEEE Trans. Magn., 38 (2002), No. 2, 741–744.

    Article  Google Scholar 

  33. Sagui, C. and Darden, T.A.: Molecular dynamics simulations of biomolecules: long-range electrostatic effects, Annu. Rev. Bio-phys. Biomol. Struct. 28 (1999), 155–79.

    Article  Google Scholar 

  34. Sagui, C. and Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules, Journal of Chemical Physics, 114 (2001), No. 15.

    Google Scholar 

  35. Schuhmann, R. and Weiland, T.: A stable interpolation technique for FDTD on non-orthogonal grids, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 11 (1998), 299–306.

    Article  MATH  Google Scholar 

  36. Schuhmann, R. and Weiland, T.: Recent advances in finite integration technique for high frequency applications, invited paper, Proceedings of SCEE-2002, Eindhoven, June 2002.

    Google Scholar 

  37. Soh, A.K., Long, Z.F.: Development of two-dimensional elements with a central circular hole, Comput. Methods Appl. Mech. Engrg., 188 (2000), 431–440.

    Article  MATH  Google Scholar 

  38. Strang, G., Variational crimes in the ?nite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.R. Aziz, ed., New York: Academic Press, 1972, 689–710.

    Google Scholar 

  39. Strouboulis T., Babuska, I. Copps, K.L.: The design and analysis of the Generalized Finite Element Method, Computer Methods in Applied Mechanics and Engineering, 181, (2000), No. 1–3, 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  40. Tarhasaari, T, Kettunen, L, Bossavit, A.: Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques, IEEE Trans. Magn. 35: (1999) No. 3, 1494–1497.

    Article  Google Scholar 

  41. Tonti, E.: Finite formulation of electromagnetic field, IEEE Trans. Magn. 38 (2002), No. 2, 333–336.

    Article  Google Scholar 

  42. Tsukerman, I.: Spurious solutions, paradoxes and misconceptions in computational electromagnetics, to appear in IEEE Trans. Magn., May 2003.

    Google Scholar 

  43. Tsukerman, I.: Finite Element Difference schemes for electro-and magnetostatics, Proceedings of Compumag'2003, Saratoga Springs.

    Google Scholar 

  44. Wiegmann, A., and Bube, K.P., The explicit-jump immersed interface method: Finite difference methods for PDEs with piece-wise smooth solutions, SIAM J. Numer. Analysis 37 (2000), No. 3, 827–862. 45. http://www.fdtd.org/

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, W. and Mittra, R.: A conformai finite difference time domain technique for modeling curved dielectric surfaces, IEEE Mi-crowave Wireless Comp. Lett., 11 (2001), 25–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsukerman, I. (2004). Toward Generalized Finite Element Difference Methods for Electro- and Magnetostatics. In: Schilders, W.H.A., ter Maten, E.J.W., Houben, S.H.M.J. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55872-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55872-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21372-7

  • Online ISBN: 978-3-642-55872-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics