Skip to main content

Antigen-Presenting Cells and Vaccine Design

  • Chapter
  • 443 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

The innate immune system modulates antigen-specific adaptive immune responses in a qualitative and quantitative manner. In this chapter we propose that vaccine design would benefit from decoding this instructive function. We argue that the characterisation of cellular (particularly antigen-presenting cells) and soluble components of the innate system, and how they are interconnected, is an essential first step towards this goal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APC:

Antigen-presenting cell

CR:

Complement receptor

DC:

Dendritic cell

Ig:

Immunoglobulin

LPS:

Lipopolysaccharide

MALT:

Mucosal associated lymphoid tissue

LRR:

Leucine-rich repeat

MØ:

Macrophage

MR:

Mannose receptor

MZ:

Marginal zone

PAMP:

Pathogen associated molecular pattern

Sn:

Sialoadhesin

SR-A:

Scavenger receptor class A

ss:

Subcapsular sinus

TD:

T-cell dependent

TI:

T-cell independent

TLR:

Toll-like receptor

TM:

Transmembrane

References

  • Agnes MC, Tan A, Mommaas AM, Drijfhout JW, Jordens R, Onderwater JJM, Verwoerd D, Mulder AA, van der Heiden A, Scheidegger D, et al. (1997) Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 27:2426–2435

    Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    PubMed  CAS  Google Scholar 

  • Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3:76–82

    PubMed  CAS  Google Scholar 

  • Allison ME, Fearon DT (2000) Enhanced immunogenicity of aldehyde-bearing antigens: a possible link between innate and adaptive immunity. Eur J Immunol 30:2881–2887

    PubMed  CAS  Google Scholar 

  • Amlot PL, Grennan D, Humphrey JH (1985) Splenic dependence of the antibody response to thymus-independent (TI-2) antigens. Eur J Immunol 15:508–512

    PubMed  CAS  Google Scholar 

  • Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF (2000) Alde-hyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol 30:1714–1723

    PubMed  CAS  Google Scholar 

  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS (1995) Oxidative/reductive conjugation of mannan to antigens selects for T1 or T2 immune responses. Proc Natl Acad Sci 92:10128–10132

    PubMed  CAS  Google Scholar 

  • Bansal P, Mukherjee P, Basu SK, George A, Bal V, Rath S (1999) MHC class I-restricted presentation of maleylated protein binding to scavenger receptors. J Immunol 162:4430–4437

    PubMed  CAS  Google Scholar 

  • Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target cells after synapse formation. Nature 411:489–494

    PubMed  CAS  Google Scholar 

  • Berney C, Herren S, Power CA, Gordon S, Martinez-Pomares L, Kosco-Vilbois MH (1999) A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. J Exp Med 190:851–860

    PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37

    PubMed  CAS  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Wong SYC, Martinez-Pomares L, Gordon S (2002) Dectin-1, is the principal b-glucan receptor on macro-phages. J Exp Med (in press)

    Google Scholar 

  • Buiting AM, De Rover Z, Kraal G, Van Rooijen N (1996) Humoral immune responses against particulate bacterial antigens are dependent on marginal metallophilic mac-rophages in the spleen. Scand J Immunol 43:398–405

    PubMed  CAS  Google Scholar 

  • Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568

    PubMed  CAS  Google Scholar 

  • Choy YM, Tsang SF, Kong SK, Leung KN, Parolis H, Lee CY, Fung KP (1996) Kl and K3 capsular antigens of Klebsiella induce tumor necrosis factor activities. Life Sci 58:153–158

    Google Scholar 

  • Claassen IJ, Osterhaus AD, Claassen E (1995) Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes. Eur J Immunol 25:1446–1452

    PubMed  CAS  Google Scholar 

  • Cody CL, Baraff LJ, Cherry JD, Marcy SM, Manclark CR (1981) Nature and rates of adverse reactions associated with DTP and DT immunisations in infants and children. Pediatrics 68:650–660

    PubMed  CAS  Google Scholar 

  • D’Amico G, Frascaroli G, Bianchi G, Transidico P, Doni A, Vecchi A, Sozzani S, Allavena P, Mantovani A (2000) Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol 1:387–391

    PubMed  Google Scholar 

  • Dietrich J, Nakajima H, Colonna M (2000) Human inhibitory and activating Ig-like receptors which modulate the function of myeloid cells. Microbes Infect 2:323–329

    PubMed  CAS  Google Scholar 

  • Dupuis M, Denis-Mize K, LaBarbara A, Peters W, Charo IF, McDonald DM, Ott G (2001) Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol 31:2910–2918

    PubMed  CAS  Google Scholar 

  • Edelman R (2002) The development and use of vaccine adjuvants. Mol Biotechnol 21:129–148

    PubMed  CAS  Google Scholar 

  • Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609

    PubMed  CAS  Google Scholar 

  • Eloranta ML, Alm GV (1999) Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-alpha/beta producers in mice upon intravenous challenge with herpes simplex virus. Scand J Immunol 49:391–394

    PubMed  CAS  Google Scholar 

  • Engering A, Geijtenbeek TBH, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168:2118–2126

    PubMed  CAS  Google Scholar 

  • Ernst JD (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66:1277–1281

    PubMed  CAS  Google Scholar 

  • Fadok VA., Chimini G (2001) The phagocytosis of apoptotic cells. Semin Immunol 13:365–372

    PubMed  CAS  Google Scholar 

  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM (1998) T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci U S A 95:9477–9481

    PubMed  CAS  Google Scholar 

  • Fischer MB, Ma M, Hsu NC, Carroll MC (1998) Local synthesis of C3 within the splenic lymphoid compartment can reconstitute the impaired immune response in C3-defi-cient mice. J Immunol 160:2619–2625

    PubMed  CAS  Google Scholar 

  • Gerber JS, Mosser DM (2001) Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors. J Immunol 166:6861–6868

    PubMed  CAS  Google Scholar 

  • Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N, Klemke CD, Dippel E, Kodelja V, Orfanos CE (1999) Alternative versus classical activation of macrophages. Pathobiology 67:222–226

    PubMed  CAS  Google Scholar 

  • Gordon S (1999) Macrophage-restricted molecules: role in differentiation and activation. Immunol Lett 65:5–8

    PubMed  CAS  Google Scholar 

  • Groeneveld PH, Erich T, Kraal G (1986) The differential effects of bacterial lipopolysaccharide (LPS) on splenic non-lymphoid cells demonstrated by monoclonal antibodies. Immunology 58:285–290

    PubMed  CAS  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman R M., Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    PubMed  CAS  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    PubMed  CAS  Google Scholar 

  • Heystek HC, Moulon C, Woltman AM, Garonne P, van Kooten C (2002) Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation. J Immunol 168:102–107

    PubMed  CAS  Google Scholar 

  • Hiltbold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ (2000) The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 165:3730–3741

    PubMed  CAS  Google Scholar 

  • Ho CY, Lo TWC, Leung KN, Fung KP, Choy YM (2000) The immunostimulating activities of anti-tumor polysaccharide from Kl capsular (polysaccharide) antigen isolated from Klebsiella pneumoniae. Immunopharm 46:1–13

    CAS  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, et al. (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200) Science 290:1768–1771

    PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signalling pathway. Nat Immunol 2:835–841

    PubMed  CAS  Google Scholar 

  • Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to Tcell areas of mesenteric lymph nodes. J Exp Med 191:435–444

    PubMed  CAS  Google Scholar 

  • Hughes DA, Fraser IP, Gordon S (1994) Murine M phi scavenger receptor: adhesion function and expression. Immunol Lett 43:7–14

    PubMed  CAS  Google Scholar 

  • Hughes DA, Fraser IP, Gordon S (1995) Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol 25:466–473

    PubMed  CAS  Google Scholar 

  • Jakobsen H, Adarna BC, Schulz D, Rappuoli R, Jonsdottir I (2001) Characterization of the antibody response to pneumococcal glycoconjugates and the effect of heat-labile en-terotoxin on IgG subclasses after intranasal immunization. J Infect Dis 183:1494–1500

    PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375:151–155

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, de Vaal Malefyt R, Kastelein RA, Bazan F, Liu Y-L (2001) Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens,. J Exp Med 194:863–869

    PubMed  CAS  Google Scholar 

  • Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1–13

    PubMed  CAS  Google Scholar 

  • Kapikian AZ, Mirchell RH, Chanock RM, Shvedoff RA., Stewart CE (1969) An epidemio-logic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89:405–421

    PubMed  CAS  Google Scholar 

  • Kraal G (1992) Cells in the marginal zone of the spleen. Int Rev Cytol 132:31–74

    PubMed  CAS  Google Scholar 

  • Kraal G, Ter Hart H, Meelhuizen C, Venneker G, Claassen E (1989) Marginal zone macro-phages and their role in the immune response against T-independent type 2 antigens: modulation of the cells with specific antibody. Eur J Immunol 19:675–680

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A., Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106:263–266

    PubMed  CAS  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Roth-stein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    PubMed  CAS  Google Scholar 

  • Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–1901

    PubMed  CAS  Google Scholar 

  • Levine MM, Woodrow GC, Kaper JB, Cobon GS (eds) (1997) New Generation Vaccines, Second Edition edn (New York, USA, Marcel Dekker, Inc.)

    Google Scholar 

  • Linehan SA, Martinez-Pomares L, da Silva RP, Gordon S (2001) Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. Eur J Immunol 31:1857–1866

    PubMed  CAS  Google Scholar 

  • Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S (1999) Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J Exp Med 189:1961–10972

    PubMed  CAS  Google Scholar 

  • Liu MA (1997) The immunologisfs grail: vaccines that generate cellular immunity. Proc Natl Acad Sci 94:10496–10498

    PubMed  CAS  Google Scholar 

  • Lynch M, Bresee JS, Gentsch JR, Glass RI (2000) Rotavirus vaccines. Curr Opin Infect Dis 13:495–502

    PubMed  CAS  Google Scholar 

  • Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig MC, Steinman RM (2000) The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151:673–683

    PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Crocker PR, Da Silva R, Holmes N, Colominas C, Rudd P, Dwek R, Gordon S (1999) Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 274:35211–35218

    PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Kosco-Vilbois M, Darley E, Tree P, Herren S, Bonnefoy JY, Gordon S (1996) Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 184:1927–1937

    PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Mahoney JA, Kaposzta R, Linehan SA, Stahl PD, Gordon S (1998) A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J Biol Chem 273:23376–23380

    PubMed  CAS  Google Scholar 

  • Mebius RE, Streeter PR, Breve J, Duijvestijn AM, Kraal G (1991) The influence of afferent lymphatic vessel interruption on vascular addressin expression. J Cell Biol 115:85–95

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nature Rev Immunol 1:135–145

    CAS  Google Scholar 

  • Medzhitov R, Janeway C Jr. (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    PubMed  CAS  Google Scholar 

  • Moingeon P, Haensler J, Lindberg A (2001) Towards the rational design of Thl adjuvants. Vaccine 19:4363–4372

    PubMed  CAS  Google Scholar 

  • Mueller CG, Cremer I, Paulet PE, Niida S, Maeda N, Lebeque S, Fridman WH, Sautes-Fridman C (2001) Mannose receptor ligand-positive cells express the metalloprotease decysin in the B cell follicle. J Immunol 167:5052–5060

    PubMed  CAS  Google Scholar 

  • Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G (2001) Mannosylated lipoarabi-nomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–7485

    PubMed  CAS  Google Scholar 

  • O’Hagan DT, MacKichan ML, Singh M (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18:69–85

    PubMed  Google Scholar 

  • Ochsenbein AF, Pinschewer DD, Odermatt B, Ciurea A, Hengartner H, Zinkernagel RM (2000) Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymphoid organs: implications for splenectomized patients and vaccine design. J Immunol 164:6296–6302

    PubMed  CAS  Google Scholar 

  • Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21:624–630

    PubMed  CAS  Google Scholar 

  • Otterlei M, Ostgaard K, Skak-Braek G, Smidsrod O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 10:286–291

    PubMed  CAS  Google Scholar 

  • Otterlei M, Sundan A, Skjak-Brae KG, Ryan L, Smidsrod O, Espevik T (1993) Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect Immun 61:1917–1925

    PubMed  CAS  Google Scholar 

  • Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10:857–860

    PubMed  CAS  Google Scholar 

  • Platt N, Gordon S (1998) Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chemistry and Biology 5:RI93–R2O3

    Google Scholar 

  • Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–197.

    PubMed  CAS  Google Scholar 

  • Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J (2001) Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 167:5067–5076

    PubMed  CAS  Google Scholar 

  • Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV (1999) Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 168:217–239.

    PubMed  CAS  Google Scholar 

  • Ramon G (1925) Sur l’augmentation anormale de Fantitoxine chez les chevaux producteurs de serum antidipherique. Bull Soc Centr Med Vet 101:227–234

    Google Scholar 

  • Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11:753–761

    PubMed  CAS  Google Scholar 

  • Sakamoto N, Shibuya K, Shimizu Y, Yotsumoto K, Miyabayashi T, Sakano S, Tsuji T, Nakayama E, Nakauchi H, Shibuya A (2001) A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur J Immunol 31:1310–1316

    PubMed  CAS  Google Scholar 

  • Sallusto F, Cella M, Danielli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocom-patibility complex class II compartment: Down regulation by cytokines and bacterial products. J Exp Med 182:389–400

    PubMed  CAS  Google Scholar 

  • Sato K, Imai Y, Irimura T (1998) Contribution of dermal macrophage trafficking in the sensitization phase of contact hypersensitivity. J Immunol 161:6835–6844

    PubMed  CAS  Google Scholar 

  • Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950

    PubMed  CAS  Google Scholar 

  • Serre K, Machy P, Grivel JC, Jolly G, Brun N, Barbet J, Leserman L (1998) Efficient presentation of multivalent antigens targeted to various cell surface molecules of dendritic cells and surface Ig of antigen-specific B cells. J Immunol 161:6059–6067

    PubMed  CAS  Google Scholar 

  • Shi Y, Rock KL (2002) Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur J Immunol 32:155–162

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Honda S, Yotsumoto K, Tahara-Hanaoka S, Eyre HJ, Sutherland GR, Endo Y, Shibuya K, Koyama A, Nakauchi H, Shibuya A. (2001) Fc(alpha)/mu receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1. Immunogenetics 53:709–711

    PubMed  CAS  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P, Herbst B, Hartneil A, Crocker PR (1997) The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92:307–316

    PubMed  CAS  Google Scholar 

  • Steinman RM, Turley S, Mellman I, Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191:411–416

    PubMed  CAS  Google Scholar 

  • Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med 188:217– 222

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Adachi Y, Ohno N, Yadomae T (2001) Thl/Th2-balancing immunomodulating activity of gel-forming (1–3)-beta-glucans from fungi. Biol Pharm Bull 24:811–819

    PubMed  CAS  Google Scholar 

  • Szakal AK, Holmes KL, Tew JG (1983) Transport of immune complexes from the subcapsular sinus to lymph node follicles on the surface of nonphagocytic cells, including cells with dendritic morphology. J Immunol 131:1714–1727

    PubMed  CAS  Google Scholar 

  • Tew JG, Wu J, Fakher M, Szakal AK, Qin D (2001) Follicular dendritic cells: beyond the necessity of T-cell help. Trends Immunol 22:361–367

    PubMed  CAS  Google Scholar 

  • Tokunaka K, Ohno N, Adachi Y, Tanaka S, Tamura H, Yadomae T (2000) Immunophar-macological and immunotoxicological activities of a water-soluble (1–3)-beta-D-glu-can, CSBG from Candida spp. Int J Immunopharmacol 22:383–394

    PubMed  CAS  Google Scholar 

  • Tzachanis D, Berezovskaya A, Nadler LM, Boussiotis VA (2002) Blockade of B7/CD28 in mixed lymphocyte reaction cultures results in the generation of alternatively activated macrophages, which suppress T-cell responses. Blood 99:1465–1473

    PubMed  CAS  Google Scholar 

  • Um S, Son E, Kim B, Moon E, Rhee D, Pyo S (2000) Activation of murine peritoneal macrophages by streptococcus pneumoniae type II capsular polysaccharide: involvement of CDl4-dependent pathway. Scand J Immunol 52:39–45

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP7O as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    PubMed  CAS  Google Scholar 

  • Van den Eerwegh AJM, Laman JD, Schellekens MM, Boersma WJA, Claassen E (1992) Complement-mediated follicular localisation of T-independent type-2 antigens: the role of marginal zone macrophages revisited. Eur J Immunol 22:719–726

    Google Scholar 

  • van Rooijen N, Kors N, Kraal G (1989) Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J Leukoc Biol 45:97–104

    PubMed  Google Scholar 

  • van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    PubMed  Google Scholar 

  • van Vliet E, Melis M, van Ewijk W (1985) Marginal zone macrophages in the mouse spleen identified by a monoclonal antibody. Anatomical correlation with a B cell sub-population. J Histochem Cytochem 33:40–44

    PubMed  Google Scholar 

  • Vos Q, Lees A, Wu Z-Q, Snapper CM, Mond JJ (2000) B-cell activation by T-cell independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunological Reviews 176:154–170

    PubMed  CAS  Google Scholar 

  • Wijffels JF, De Rover Z, van Rooijen N, Kraal G, Beelen RH (1991) Chronic inflammation induces the expression of dendritic cell markers not related to functional antigen presentation on peritoneal exudate macrophages. Immunobiology 184:83–92

    PubMed  CAS  Google Scholar 

  • Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Gunther S, Moderer M (2002) Expression and function of the mannose receptor CD2O6 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 118:327–334

    PubMed  CAS  Google Scholar 

  • Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233–242

    PubMed  CAS  Google Scholar 

  • Wykes M, Pombo A, Jenkins C, MacPherson GG (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 161:1313–1319

    PubMed  CAS  Google Scholar 

  • Yokochi T, Nakashima I, Kato N (1980) Adjuvant action of capsular polysaccharide of Klebsiella pneumoniae on antibody response. Microbiol Immunol 24:141–154

    PubMed  CAS  Google Scholar 

  • Yu P, Wang Y, Chin RK, Martinez-Pomares L, Gordon S, Kosco-Vibois MH, Cyster J, Fu YX (2002) B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J Immunol 168:5117–5123

    PubMed  CAS  Google Scholar 

  • Zandvoort A, Lodewijk ME, de Boer NK, Dammers PM, Kroese FG, Timens W (2001) CD27 expression in the human splenic marginal zone: the infant marginal zone is populated by naive B cells. Tissue Antigens 58:234–242

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM (2000) Localization dose and time of antigens determine immune reactivity. Semin Immunol 12:163–171; discussion 257–344

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, S.Y.C., Martinez-Pomares, L. (2003). Antigen-Presenting Cells and Vaccine Design. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics