Skip to main content

Macrophage Immunity and Mycobacterium tuberculosis

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

Tuberculosis (TB) is rivalled only by the acquired immunodeficiency syndrome (AIDS) as a communicable cause of death. Yet of an estimated 2 billion individuals who have been infected with the pathogen Mycobacterium tuberculosis (Mtb), less than 10% will develop disease. For the remainder, natural immunity appears sufficient to limit bacterial growth. An integral component of host protection to TB is the activated macrophage. Mtb recognition, phagocytosis, vacuolar trafficking and redox-based killing are all enlisted as part of this cell’s anti-tubercular arsenal. When assembled together with lymphocytes and stromal elements as part of the tuberculoid granuloma, macrophages also provide a physical constraint to further dissemination. The liaison between macrophages and T cells in particular forms much of the current basis of vaccination in immunologically naive subjects. Recent experimentation with post-exposure vaccines, however, suggests that cellular immunity may not be fully elicited by the existing single-dose regimen. New approaches that embrace small molecule chemistry to enhance or mimic macrophage effector mechanisms, or which sensitise Mtb to further immunologic insult, could help address this issue. Harnessing the macrophage as a therapeutic target could thus prove a useful adjunct to TB vaccination and chemotherapy in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AFB :

Acid-fast bacilli

AM:

Alveolar macrophage

BAL:

Bronchoalveolar lavage

CGD:

Chronic granulomatous disease

CR:

Complement receptor

FcR:

Fc receptor

GPI:

Glycosyl phosphatidylinositol

GTPase:

Guanosine 5′-triphosphatase

IFN-γ :

Interferon gamma

IL:

Interleukin

RF :

Interferon regulatory factor

Jak:

Janus kinase

LAM:

Lipoarabinomannan

LPS:

Lipopolysaccharide

LTBI:

Latent TB infection

MDR:

Multi-drug resistant

MHC:

Major histocompatibility complex

MR:

Mannose receptor

Mtb:

Mycobacterium tuberculosis

MGC:

Multinucleated giant cell

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

NF-κB:

Nuclear factor (NF)-κB

NRAMP:

Natural resistance-associated macrophage protein

NO:

Nitric oxide

N0S2:

Inducible nitric oxide synthase

PAMP:

Pathogen-associated molecular pattern

PBMC:

Peripheral blood mononuclear cell

PG:

Phagosome

PI3P:

Phosphatidyl inositol 3-phosphate

PL:

Phagolysosome

PRR:

Pattern-recognition receptor

RNI:

Reactive nitrogen intermediates

ROI:

Reactive oxygen intermediates

SNO:

S-nitrosothiol

SP:

Surfactant protein

STAT:

Signal transducer and activator of transcription

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor alpha

References

  • Adams JS, Gacad MA (1985) Characterization of 1-alpha hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J Exp Med 161: 755–765

    PubMed  CAS  Google Scholar 

  • Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL (1997) Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuberc Lung Dis 78: 237–246

    CAS  Google Scholar 

  • Adams LB, Mason CM, Kolls JK, Scollard D, Krahenbuhl JL, Nelson S (1995) Exaccerbation of acute and chronic murine tuberculosis by administration of a tumor necrosis factor receptor-expressing adenovirus. J Infect Dis 171: 400–405

    PubMed  CAS  Google Scholar 

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 762–787

    Google Scholar 

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Ann Rev Immunol 17: 593–623

    CAS  Google Scholar 

  • Agaroff D, Monahan IM, Mangan JA, Butcher PD, Krishna S (1999) Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J Exp Med 190: 717–724

    Google Scholar 

  • Al-awar O, Radhakrishna H, Powell NN, Donaldson JG (2000) Separation of membrane trafficking and actin remodelling functions of ARF6 with an effector domain mutant. Mol Cell Biol 20: 3685–3694

    Google Scholar 

  • Andersen P, Askgaard L, Ljungqvist L, Bennedsen J, Heron I (1991) Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 59: 1905–1910

    PubMed  CAS  Google Scholar 

  • Anderson JM (2000) Multinucleated giant cells. Curr Opin Hematol 7: 40–47

    PubMed  CAS  Google Scholar 

  • Arias M, Rojas M, Zabaleta JI, Rodriguiz I, Paris SC, Barrera LF, Garcia LF (1997) Inhibition of Mycobacterium tuberculosis by Bcg (r) and Bcg (s) macrophages correlates with nitric oxide production. J Infect Dis 176: 1552–1558

    PubMed  CAS  Google Scholar 

  • Armstrong JA, D’Arcy Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134: 713–740

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. J Exp Med 142: 1–16

    PubMed  CAS  Google Scholar 

  • Arrunda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454–1457

    Google Scholar 

  • Bach EA, Aguet M, Schreiber RD (1997) The IFN-γ receptor: A paradigm for cytokine receptor signaling. Ann Rev Immunol 15: 563–591

    CAS  Google Scholar 

  • Balcewitz-Sablibska MK, Keane J, Kornfeld H, Remold HG (1998) Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α. J Immunol 161: 2636–2641

    Google Scholar 

  • Banu S, Honore N, aint-Joanis B, Philpott D, Prevost MC, Cole ST (2002) Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44: 9–19

    PubMed  CAS  Google Scholar 

  • Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372–377

    PubMed  CAS  Google Scholar 

  • Baulard AR, Besra G, Brennan PJ (1999) The cell-wall core of Mycobacterium: structure, biogenesis and genetics. In: Ratledge C, Dale J (eds) Mycobacteria: molecular biology and virulence. Blackwell Science, Oxford, pp240–259

    Google Scholar 

  • Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgewick JD, Britton WJ (1999) Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162: 3504–3511

    PubMed  CAS  Google Scholar 

  • Beatty WL, Rhoades ER, Ullrich H-J, Chatterjee D, Heuser JE, Russell DG (2000) Trafficking and release of Mycobacterial lipids from infected macrophages. Traffic 1: 235–247

    PubMed  CAS  Google Scholar 

  • Bekker LG, Haslett P, Maartens G, Steyn L, Kaplan G (2000) Thalidomide-induced antigen-specific immune stimulation in patients with human immunodeficiency virus type I and tuberculosis. J Infect Dis 181: 954–965

    PubMed  CAS  Google Scholar 

  • Bellamy R, Ruwende C, Corrah R, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in west africans. N Eng J Med 338: 640–644

    CAS  Google Scholar 

  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M, Whittle HC, Hill AV (1999) Tuberculosis and chronic hepatitis B virus infections in the vitamin D receptor gene. J Infect Dis 179: 721–724

    PubMed  CAS  Google Scholar 

  • Bergeron A, Bonay M, Kambouchner M, Lecossier D, Riquet M, Soler P, Hance A, Tazi A (1997) Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J Immunol 159: 3034–3043

    PubMed  CAS  Google Scholar 

  • Bernardo J, Billingslea AM, Blumenthal RL, Seetoo KF, Simons ER, Fenton MJ (1998) Differential responses of human mononuclear phagocytes to mycobacterial lipoarabino-mannans: role of CD14 and the mannose receptor. Infect Immun 66: 28–35

    PubMed  CAS  Google Scholar 

  • Bertholet S, Tzeng E, Felley-Bosco E, Mauel J (1999) Expression of inducible nitric oxide synthase in human monocytic U937 cells allows high output nitric oxide synthase. J Leukoc Biol 65: 50–58

    PubMed  CAS  Google Scholar 

  • Blackwell JM, Black GF, Peacock CS, Miller EN, Sibthorpe D, Gnananandha D, Shaw JJ, Silveira F, Lins-Lainson Z, Ramos F, Collins A, Shaw MA (1997) Immunogenetics of leishmanial and mycobacterial infections: the Belem family study. Philos Trans R Soc Lond B Biol Sci 352: 1331–1345

    PubMed  CAS  Google Scholar 

  • Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69: 800–809

    PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2: 907–916

    PubMed  CAS  Google Scholar 

  • Bonecini-Almeida MG, Chitale S, Boutsikakis I, Geng J, Doo H, He S, Ho JL (1998) Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-γ and primed lymphocytes. J Immunol 160: 4490–4499

    PubMed  CAS  Google Scholar 

  • Bonnerot C, Briken V, Brachet V (1998) Syk protein tyrosine kinase regulates Fc receptor γ-chain mediated transport to lysosomes. EMBO J 17: 4606–4616

    PubMed  CAS  Google Scholar 

  • Bottrel RL, Yang Y-L, Levy DE, Tomai M, Reis LF (1999) The immune response modifier imiquod requires STAT-1 for induction of interferon, interferon-stimulated genes, and interleukin-6. Antimicrob Agents Chemother 43: 856–861

    PubMed  CAS  Google Scholar 

  • Bravo J, Karanthanassis D, Pacoid CM, et al (2001) The crystal structure of the PX domain from p4O (phox) bound to phosphoinositol 3-phosphate. Mol Cell 8: 829–839

    PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang R-B, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through Tolllike receptors. Science 285: 732–736

    PubMed  CAS  Google Scholar 

  • Briscoe H, Roach D, Medows N, Rathjen D, Britton WJ (2000) A novel tumor necrosis factor (TNF) mimetic peptide prevents recrudescence of Mycobacterium bovis bacillus Calmette-Guein (BCG) infection in CD4+ T cell-depleted mice. J Leukoc Biol 68: 538–544

    PubMed  CAS  Google Scholar 

  • Brosch R, Goron SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S., van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99: 3684–3689

    PubMed  CAS  Google Scholar 

  • Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073–1077

    PubMed  CAS  Google Scholar 

  • Buchmeier N, Blanc-Polard A, Erht S, Piddington D, Riley L, Groisman EA (2000) A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol Microbiol 35: 1375–1382

    PubMed  CAS  Google Scholar 

  • Byrd TF (1998) Multinucleated giant cell formation induced by IFN-γ/IL-3 is associated with restriction of Mycobacterium tuberculosis cell to cell invasion in human monocyte monolayers. Cell Immunol 188: 89–96

    PubMed  CAS  Google Scholar 

  • Canetti G (1955). The tubercle bacillus in the pulmonary lesion of man. Springer Publishing, New York, pp 9–20

    Google Scholar 

  • Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20: 683–693

    PubMed  CAS  Google Scholar 

  • Caplan S, Hartneil LM, Aguilar RC, Naslavsky N, Bonifacino JS (2001) Human Vam6p promotes lysosomal clustering and fusion in vivo. J Cell Biol 154: 109–121

    PubMed  CAS  Google Scholar 

  • Casanova J-L, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Ann Rev Immunol 20: 581–620

    CAS  Google Scholar 

  • CDC (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. M.M.W.R. 49: 1–52

    Google Scholar 

  • Chan ED, Morris KR, Belisle JT, Hill P, Remigio LK, Brennan PJ, Riches DW (2001) Induction of inducible nitric oxide synthase-NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NFкB signaling pathways. Infect Immun 69: 2001–201

    PubMed  CAS  Google Scholar 

  • Chan J, Fan XD, Hunter SW, Brennan PJ, Bloom BR (1991) Lipoarabinomannan, a possible virulence factor involved in the persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755–1761

    PubMed  CAS  Google Scholar 

  • Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR (1995) Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63: 736–740

    PubMed  CAS  Google Scholar 

  • Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macro-phages. J Exp Med 175: 1111–1122

    PubMed  CAS  Google Scholar 

  • Chapman J, Bernard J (1962) The tolerances of unclassified mycobacteria. Am Rev Respir Dis 86: 582–583

    PubMed  CAS  Google Scholar 

  • Chun T, Serbina NV, Nolt D, Wang B, Chiu NM, Flynn JM, Wang C-R (2001) Induction of M3-restricted cytotoxic T lymphocyte responses by N-formylated peptides derived from Mycobacterium tuberculosis. J Exp Med 193: 1213–1220

    PubMed  CAS  Google Scholar 

  • Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Pezez JA, Roy BJ, Keszler M, Kinsella JP (2000) Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 342: 469–474

    PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosome maturation is inhibited. J Exp Med 181: 257–270

    PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1996) The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 184: 1349–1355

    PubMed  CAS  Google Scholar 

  • Clemens DL, Lee BY, Horwitz MA (2000a) Deviant expression of Rab5 on phagosomes containing the intracelleular pathogens Mycobacterium tuberculosis and Legionella pneumophilia is associated with altered phagosomal fate. Infect Immun 68: 2671–2684

    PubMed  CAS  Google Scholar 

  • Clemens DL, Lee B-Y, Horwitz MA (2000b) Mycobacterium tuberculosis and Legionella pheumophilia phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect Immun 68: 5154–5166

    PubMed  CAS  Google Scholar 

  • Clynes R, Maizes J, Guinamard R, Ono M, Takai T, Ravetch J (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189: 179–185

    PubMed  CAS  Google Scholar 

  • Cohen AB, Cline MJ (1971) The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J Clin Invest 50: 1390–1398

    PubMed  CAS  Google Scholar 

  • Cole ST, and forty-one others (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–344

    PubMed  CAS  Google Scholar 

  • Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, Vande Woude GF, Sher A, Taylor GA (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon-γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194: 181–187

    PubMed  CAS  Google Scholar 

  • Collins HL, Kaufmann SH (2001) The many faces of host responses to tuberculosis. Immunology 103: 1–9

    PubMed  CAS  Google Scholar 

  • Condos R, Rom WN, Schluger NW (1997) Treatment of multi-drug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 349: 1513–1515

    PubMed  CAS  Google Scholar 

  • Contursi C, Wang I-M, Gabriele L, Gadina M, O’Shea J, Morse III HC, Ozato K (2000) IFN consensus sequence binding protein potentiates STAT1 -dependent activation of IFN-?-responsive promoters of macrophages. Proc Natl Acad Sci USA 97: 91–96

    PubMed  CAS  Google Scholar 

  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon ? gene-disrupted mice. J Exp Med 178: 2243–2247

    CAS  Google Scholar 

  • Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistance to pulmonary tuberculosis in p47phox-/-mice. Infect Immun 68: 1231–1234

    PubMed  CAS  Google Scholar 

  • Crowle AJ, Ross EJ, May MH (1987) Inhibition of l,25(OH)2-vitamin D3 of the mutiplication of virulent tubercle bacilli in cultured human macrophages. Infect Immun 55: 2945–2950

    PubMed  CAS  Google Scholar 

  • Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VLJ, DeFranco AL (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fc receptors on macrophages. J Exp Med 186: 1027–1039.

    PubMed  CAS  Google Scholar 

  • Cywes C, Hoppe HC, Daffe M, Ehlers MR (1997) Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 65: 4258–4266

    PubMed  CAS  Google Scholar 

  • Dannenberg AM, Rook GAW (1994) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In: Bloom BR (ed) Tuberculosis. ASM Press, Washington, pp 459–484

    Google Scholar 

  • Darnell JE Jr (1997) STATs and gene regulation. Science 277: 1630–1635

    PubMed  CAS  Google Scholar 

  • De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE (2000) The salicylate derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97: 1252–1257

    PubMed  Google Scholar 

  • Denis M (1991a) Interferon-gamma-treated murine macrophages inhibit growth of the tubercle bacilli by generation of reactive nitrogen intermediates. Cell Immunol 132: 150–157

    PubMed  CAS  Google Scholar 

  • Denis M (1991b) Involvment of cytokines in determining resistance and acquired immunity in murine tuberculosis. J Leukoc Biol 50: 495–501

    PubMed  CAS  Google Scholar 

  • Denzer K, Kleijmeer M, Heijnen H, Stoovogel W, Geuze H (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113: 3365

    PubMed  CAS  Google Scholar 

  • Desjardins M (1995) Biogenesis of phagolysosomes: the “kiss and run” hypothesis. Trends Cell Biol 5: 183–186

    PubMed  CAS  Google Scholar 

  • Dlugovitzky D, Bay ML, Rateni L, Fiorenza G, Vietti L, Farroni MA, Bottasso OA (2000) Influence of disease severity on nitrite and cytokine production by peripheral blood monouclear cells (PBMC) from patients with pulmonary tuberculosis (TB). Clin Exp Immunol 122: 343–349

    PubMed  CAS  Google Scholar 

  • Douvas GS, Berger EM, Repine JE, Crowle AJ (1986) Natural mycobacteriostatic activity in human monocyte-derived adherent cells. Am Rev Respir Dis 134: 44–48

    PubMed  CAS  Google Scholar 

  • Downing JF, Pasula R, Wright JR, Twigg HL, Martin JW (1995) Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci USA 92: 4848–4852

    PubMed  CAS  Google Scholar 

  • Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D, Covera S, Lambright DG (2001) Multivalent endosome targeting by homodimeric EEA1. Mol Cell 8: 947–958

    PubMed  CAS  Google Scholar 

  • Dumont A, Sheldon H (1965) Changes in the fine structure of macrophages in experimentally produced tuberculous granulomas in hamsters. Lab Invest 14: 2034–2055

    PubMed  CAS  Google Scholar 

  • Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis-estimated incidence, prevalence, and mortality by country. JAMA 282: 677–686

    PubMed  CAS  Google Scholar 

  • Dye C, Williams BG, Espinal MA, Raviglione MC (2002) Erasing the world’s slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295: 2042–2046

    PubMed  CAS  Google Scholar 

  • Edwards KM, Cynamon MH, Voladri RK, Hager CC, Destefano MS, Tham KT, Lakey DL, Bochan MR, Kernodle DS (2001) Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 164: 2213–2219

    PubMed  CAS  Google Scholar 

  • Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P, Stephens LR, Hawkins PT (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. CurrBiol 11: 1631–1635

    CAS  Google Scholar 

  • Enelow RI, Sullivan GW, Carper HT, Mandell GL (1992) Induction of multinucleated giant cell formation from in vitro culture of human monocytes with interleukin-3 and interferon-?: comparison with other stimulating factors. Am J Respir Cell Mol Biol 6: 57–62

    PubMed  CAS  Google Scholar 

  • Erht S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming the macrophage transcriptome in response to interferon-? and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194: 1123–1139

    Google Scholar 

  • Ernst J (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66: 1277–1281

    PubMed  CAS  Google Scholar 

  • Fachetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, Notarangelo LD, Badola-to R (1999) Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Path 154: 145–152

    Google Scholar 

  • Fais S, Burgio VL, Silvestri M, Capobianchi MR, Pacchiarotti A, Pallone F (1994) Multinucleated giant cells generation by interferon-?. Changes in expression and distribution of intracellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Invest 71: 737–744

    PubMed  CAS  Google Scholar 

  • Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X7 receptor and polykarion formation. Mol Biol Cell 11: 3169–3176

    PubMed  CAS  Google Scholar 

  • Fenhalls G, Wong A, Bezuidenhout J, van Helden P, Bardin P, Lukey PT (2000) In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas. Infect Immun 68: 2827–2836

    PubMed  CAS  Google Scholar 

  • Fenton MJ, Vermeulen MW, Kim S, Burdick M, Streiter RM, Kornfeld H (1997) Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis. Infect Immun 65: 5149–5156

    PubMed  CAS  Google Scholar 

  • Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS (1999) Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohy-drate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163: 312–321

    PubMed  CAS  Google Scholar 

  • Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97: 435–447

    PubMed  CAS  Google Scholar 

  • Ficsher K, Chatterjee D, Torrelles J, Brennen PJ, Kaufmann SH, Schaible UE (2001) Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J Immunol 167: 2187–2192

    Google Scholar 

  • Finbloom DS, Hoover DL, Wahl LM (1985) The characteristics of binding of human recombinant interferon-gamma to its receptor on human monocytes and human monocyte-like lines. J Immunol 135: 300–305

    PubMed  CAS  Google Scholar 

  • Flesch I, Kaufmann SH (1987) Mycobacterial growth inhibition by interferon-? activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis. J Immunol 138: 4408–4413

    PubMed  CAS  Google Scholar 

  • Flynn J, Chan J, Triebold K, Dalton D, Stewart T, Bloom B (1993) An essential role for interferon ? in resistance to Mycobacterium tuberculosis infection. J Exp Med 178: 2249–2254

    PubMed  CAS  Google Scholar 

  • Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR (1995) Tumor necrosis factor-a is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572

    PubMed  CAS  Google Scholar 

  • Flynn JL, Scanga CA, Tanaka KE, Chan J (1998) Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160: 1796–1803

    PubMed  CAS  Google Scholar 

  • Flynn JL, Chan J (2001) Tuberculosis: latency and reactivation. Infect Immun 69: 4195–4201

    PubMed  CAS  Google Scholar 

  • Frattazzi C, Manjunath N, Arbeit RD, Carini C, Gerken TA, Ardman B, Remold-O’Donnell E, Remold HG (2000) A macrophage invasion mechanism of mycobacteria implicating the extracellular domain of CD43. J Exp Med 192: 183–192

    Google Scholar 

  • Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154: 631–644

    PubMed  CAS  Google Scholar 

  • Fratti RA, Chua J, Deretic V (2002) Cellubrevin alterations and Mycobacterium tuberculosis phagosome : maturation arrest. J Biol Chem 277: 17320–17326

    PubMed  CAS  Google Scholar 

  • Fratti RA, Vergne I, Chua I, Skidmore J, Deretic V (2000) Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block. Elecrophoresis 21: 3378–3385

    CAS  Google Scholar 

  • Fukushima K, Hiratani K, Kadota J, Komori K, Hirota M, Hara K (1991) Analysis of cellular and biochemical contents of bronchoalveolar lavage fluid from patients with pulmonary tuberculosis. Kekkaku 66: 589–598.

    PubMed  CAS  Google Scholar 

  • Galindo B, Lazdins J, Castillo R (1974) Fusion of normal rabbit alveolar macrophages induced by supernatant fluids from BCG-sensitized lymph node cells after elicitation by antigen. Infect Immun 9: 212–216

    PubMed  CAS  Google Scholar 

  • Ganster RW, Taylor BS, Shao L, Geller DA (2001) Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-KB. Proc Natl Acad Sci USA 98: 8638–8643

    PubMed  CAS  Google Scholar 

  • Gao P-S, Fujishima S, Mao X-Q, et al. (2000) Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. Clin Genet 58: 74–76

    PubMed  CAS  Google Scholar 

  • Garcia I, Miyazaki Y, Marchai G, Lesslauer W, Vassalli P (1997) High sensitivity of transgenic mice expressing soluble TNFR1 fusion protein to mycobacterial infections: synergistic action of TNF and IFN-gamma in the differentiation of protective granulomas. Eur J Immunol 27: 3182–3190

    PubMed  CAS  Google Scholar 

  • Gasser A, Most J (1999) Generation of multinucleated giant cells in vitro by culture of human monocytes with Mycobacterium bovis BCG in combination with cytokine-con-taining supernatants. Infect Immun 67: 395–402

    PubMed  CAS  Google Scholar 

  • Gaynor CD, McCormack FX, Voelker DR, McGowan SE, Schlesinger LS (1995) Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 155: 5343–5351

    PubMed  CAS  Google Scholar 

  • Gercken J, Pryjma J, Ernst M, Flad HD (1994) Defective antigen presentation of Mycobacterium tuberculosis-infected monocytes. Infect Immun 62: 3472–3478

    PubMed  CAS  Google Scholar 

  • Geuze HJ (1998) The role of endosomes and lysosomes in MHC class II functioning. Immunol Today 19: 282–287

    PubMed  CAS  Google Scholar 

  • Giannella RA, Broitman SA, Zamcheck N (1973) Influence of gastric acidity on bacterial and parasitic enteric infections. Ann Int Med 78: 271–276

    PubMed  CAS  Google Scholar 

  • Gillman T, Wright LJ (1966) Probable in vivo origin of multi-nucleated giant cells from circulating mononuclears. Nature 209: 263–265

    PubMed  CAS  Google Scholar 

  • Giosue S, Casarini M, Alemanno L, Galluccio G, Mattia P, Pedicelli G, Rebek L, Bisetti A, Ameglio F (1998) Effects of aerosilized interferon-alpha in patients with pulmonary tuberculosis. Am J Respir Crit Care Med 158: 1156–1162

    PubMed  CAS  Google Scholar 

  • Giosue S, Casarini M, Ameglio F, Zangrilli P, Palla M, Altieri AM, Bisetti A (2000) Aerosilized interferon-alpha treatment in patients with multi-drug-resistant pulmonary tuberculosis. Eur Cytokine Netw 11: 99–104

    PubMed  CAS  Google Scholar 

  • Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 183: 1527–1532

    PubMed  CAS  Google Scholar 

  • Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual function regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865

    PubMed  CAS  Google Scholar 

  • Gomes MS, Paul S, Moreira AL, Appelberg R, Rabinovitch M, Kaplan G (1999) Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect Immun 67: 3199–3206

    PubMed  CAS  Google Scholar 

  • Goodman PA, Niehoff LB, Uckun FM (1998) Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage cells. J Biol Chem 273: 17742–17748

    PubMed  CAS  Google Scholar 

  • Gordon AH, D’Arcy Hart PD, Young MR (1980) Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286: 79–81

    PubMed  CAS  Google Scholar 

  • Gordon S (1999) Macrophages and the immune response. In: Paul WE (ed) Fundamental Immunology. Lippencott-Raven, Philadelphia, pp 533–545

    Google Scholar 

  • Goren MB, D’Arcy Hart P, Young MR, Armstrong JA (1976) Prevention of phagosome-ly-sosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 73: 2510–2514

    PubMed  CAS  Google Scholar 

  • Gotri A, Rossi M, Trabattoni D, Marchetti G, Fusi M, Molteni C, Clerici M, Franzetti F (2000) Tumor necrosis factor-a increased production during thalidomide treatment in patients with tuberculosis and human immunodeficiency virus coinfection. J Infect Dis 182: 639

    Google Scholar 

  • Green RM, Seth A, Connell ND (2000) A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect Immun 68: 429–436

    PubMed  CAS  Google Scholar 

  • Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14: 136–145

    PubMed  CAS  Google Scholar 

  • Halme M, Maasilta P, Repo H, Ristola M, Takinen E, Mattson K, Cantell K (1995) Inhaled recombinant interferon gamma in patients with lung cancer: pharmacokinetics and effects on chemiluminescence responses of alveolar macrophages and peripheral blood neutrophils and monocytes. Int J Radiat Biol Phys 31: 93–101

    CAS  Google Scholar 

  • Harth G, Horwitz MA (1999) An inhibitor of exported Mycobacterium tuberculosis gluta-mine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 189: 1425–1435

    PubMed  CAS  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200

    PubMed  CAS  Google Scholar 

  • Hill LD, Sun L, Leuschen MP, Zack TL (1993) C3 synthesis by A549 alveolar epithelial cells is increased interferon-gamma and dexamethasone. Immunology 79: 236–240

    PubMed  CAS  Google Scholar 

  • Hirsch CS, Ellner JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152: 743–753

    PubMed  CAS  Google Scholar 

  • Hmama Z, Nandan D, Sly L, Knutson KL, Herrera-Velit P, Reiner NE (1999) la,25-dihy-droxyvitamin D3-induced myeloid cell differentiation is regulated by a vitamin D receptor-phosphatidylinositol 3-kinase signaling complex. J Exp Med 190: 1583–1594

    PubMed  CAS  Google Scholar 

  • Hocking WG, Golde DW (1979) The pulmonary alveolar macrophage. N Eng J Med 301: 580, 639

    CAS  Google Scholar 

  • Holland SM, Eisenstein EM, Kuhns DB, Turner ML, Fleisher TA, Strober W, Gallin JI (1994) Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. N Engl J Med 330: 1348–1355

    PubMed  CAS  Google Scholar 

  • Holmskov U (1999) Lung surfactant proteins (SP-A and SP-D) in non-adaptive host responses to infection. J Leukoc Biol 66: 747–752

    PubMed  CAS  Google Scholar 

  • Hu C, Mayadas-Norton T, Tanaka K, Chan J, Salgame P (2000) Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. J Immunol 165: 2596–2602

    PubMed  CAS  Google Scholar 

  • Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phosholipase D activity by lipopolysaccharide and IFN-gamma in the human THP-1 monocytic cell line. J Immunol 157: 5627–5637

    PubMed  CAS  Google Scholar 

  • Institute of Medicine (2000) Ending neglect: The elimination of tuberculosis in the United States. National Academy Press, Washington, DC.

    Google Scholar 

  • Iseman MD (2000) Extrapulmonary tuberculosis in adults. In: Iseman, MD (ed) A Clinician’s Guide to Tuberculosis. Lippincott Williams and Wilkins, Philadelphia, pp 145–197

    Google Scholar 

  • Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (NRAMP1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192: 1237–1247

    PubMed  CAS  Google Scholar 

  • Jackett PS, Aber V, Lowrie DB (1978) Virulence and resistance to Superoxide, low pH andn hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 107: 37–45

    Google Scholar 

  • Jaffe HA, Buhl R, Mastrangeli A, Holroyd KJ, Saltini C, Czerski D, Jaffe HS, Kramer S,Sherwin S, Crystal RG (1991) Organ-specific cytokine therapy. Local activation of monouclear phagocytes by delivery of an aerosol of recombinant interferon-? to the human lung. J Clin Invest 88: 297–302

    PubMed  CAS  Google Scholar 

  • Janeway CJ (1989) Approaching the asymptote? Evolution and revolution in immunology.Cold Spring Harb Symp Quant Biol 54: 1–13

    PubMed  CAS  Google Scholar 

  • Jones BW, Heldwin KA, Means TK, Saukkonen JJ, Fenton MJ (2001) Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages.Ann Rheum Dis 60 (Suppl 3): 6–12

    Google Scholar 

  • Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H,Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11:1680–1685

    PubMed  CAS  Google Scholar 

  • Juffermans NP, Verbon A, van Deventer SJ, van Deutekom H, Speelman P, van der Poll T (1998) Tumor necrosis factor and interleukin-1 inhibitors as markers of disease activity in tuberculosis. Am J Respir Crit Care Med 157: 1328–1331

    PubMed  CAS  Google Scholar 

  • Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86: 319–325

    PubMed  CAS  Google Scholar 

  • Kanedo H, Yamada H, Mizuno S, Udagawa T, Kazumi Y, Sekikawa K, Sugawara I (1999) Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 79: 379–386

    Google Scholar 

  • Karupiah G, Xie QW, Buller RM, Duarte C, Nathan C, MacMicking JD (1993) Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261:1445–1448

    PubMed  CAS  Google Scholar 

  • Kato-Maeda M, Bifani PJ, Kreiswirth BN, Small PM (2001) The nature and consequence of genetic variability within Mycobacterium tuberculosis. J Clin Invest 107: 533–537

    PubMed  CAS  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 9: 143–150

    Google Scholar 

  • Keane J, Gershon S, Wise R, Mirabile-Evans E, Kasznica J, Scwieterman WD, Siegel JN,Braun MM (2001) Tuberculosis associated with infliximab, a tumor necrosis factor-a-neutralizing agent. N Engl J Med 345: 1098–1104

    PubMed  CAS  Google Scholar 

  • Kisich KO, Heifets L, Higgins M, Diamond G (2001) Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterum tuberculosis. Infect Immun 69: 2692–2699

    PubMed  CAS  Google Scholar 

  • Knutson KL, Hmama Z, Hererra-Velit P, Rochford R, Reiner NE (1998) Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine phosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes.Role of the Src homology 2 containing tyrosine phophatase 1. J Biol Chem 273: 645–652

    PubMed  CAS  Google Scholar 

  • Kobzik L, Godleski J, Brain J (1990) Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis. J Immunol 144: 4312–4319

    PubMed  CAS  Google Scholar 

  • Koch R (1882) Die atiologie der tuberkulose. Berliner Klin Wochenschr 19: 221–230

    Google Scholar 

  • Koeffler HP, Reichel H, Bishop JE, Norman AW (1985) Gamma interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages. Biochem Bio-phys Res Comm 127: 596–603

    CAS  Google Scholar 

  • Krugmann S, Anderson KE, Ridley SH, et al (2002) Identification of ARAP3, a novel PI3 K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell 9: 95–108

    PubMed  CAS  Google Scholar 

  • Kuncewicz T, Balakrishnan P, Snuggs MB, Kone BC (2001) Specific association of nitric oxide synthase-2 with Rac isoforms in activated murine macrophages. Am J Physiol 281: F326–F336

    CAS  Google Scholar 

  • Kusner DJ, Adams J (2000) ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164: 379–388

    PubMed  CAS  Google Scholar 

  • Kusner DJ, Barton JA (2001) ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol 167: 3308–3315

    PubMed  CAS  Google Scholar 

  • Langhans T (1868) Ueber Riesenzellen mit wandestandigen Kernen in Tuberkeln und die fibröse Form des Tuberkels. Virchows Arch Pathol Anat 42: 382–404

    Google Scholar 

  • Laochumroonvorapong P, Paul S, Manca C, Freedman VH, Kaplan G (1997) Mycobacterial growth and sensitivity to H202 killing in human monocytes in vitro. Infect Immun 65: 4850–4857

    PubMed  CAS  Google Scholar 

  • Lau YL, Chan CF, Ha SY, Hui YF, Yuen KY (1998) The role of phagocytic respiratory burst in host defense against Mycobacterium tuberculosis. Clin Infect Dis 26: 226–227

    PubMed  CAS  Google Scholar 

  • Lillebaek T, Dirksen A, Baess I, Strunge B, Thomsen VO, Andersen AB (2002) Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J Infect Dis 185: 401–404

    PubMed  CAS  Google Scholar 

  • Lipton AJ, Johnson MA, MacDonald T, Lieberman MW, Gozal D, Gaston B (2001) S-ni-trosothiols signal ventilatory response to hypoxia. Nature 413: 171–174

    PubMed  CAS  Google Scholar 

  • Lloyd J (2000) Lysosome membrane permeability: implications for drug delivery. Adv Drug Delivery Rev 41: 189–200

    CAS  Google Scholar 

  • Loetscher H, Gentz R, Zulauf M, Lustig A, Tabuchi H, Schlaeger EJ, Brockhaus M, Gallati H, Manneberg M, Lesslauer W (1991) Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. J Biol Chem 266: 18324–18329

    PubMed  CAS  Google Scholar 

  • Long R, Light B, Talbot JA (1999) Mycobacteriocidal action of exogenous nitric oxide. Antimicrobial Agents Chemo. 43: 403–405

    CAS  Google Scholar 

  • Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulas E, Colston MJ, Hewinson RG, Moelling K, Silva CL (1999) Therapy of tuberculosis in mice by DNA vaccination. Nature 400: 269–271

    PubMed  CAS  Google Scholar 

  • Lowrie DB, Silva CL (2000) Enhancement of immunocompetence in tuberculosis by DNA vaccination. Vaccine 18: 1712–1716

    PubMed  CAS  Google Scholar 

  • Lurie M (1939) Studies on the mechanism of immunity in tuberculosis. The mobilisation of mononuclear phagocytes in normal and immunized animals and their relative capacities for division and phagocytosis. J Exp Med 579–605

    Google Scholar 

  • Lurie M (1942) Studies on the mechanism of immunity in tuberculosis. The fate of tubercle bacilli ingested by mononuclear phagocytes derived from normal and immunized animals. J Exp Med 75: 247–268

    PubMed  CAS  Google Scholar 

  • MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q-w, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide syn-thase. Cell 81: 641–650

    PubMed  CAS  Google Scholar 

  • MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997a) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94: 5243–5248

    PubMed  CAS  Google Scholar 

  • MacMicking J, Xie Q-w, Nathan C (1997b) Nitric oxide and macrophage function. Ann Rev Immunol 15: 323–350

    CAS  Google Scholar 

  • Malik ZA, Denning GM, Kusner DJ (2000) Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagolysosomal fusion and increased survival within human macrophages. J Exp Med 191: 287–302

    PubMed  CAS  Google Scholar 

  • Malik ZA, Iyer SS, Kusner DJ (2001) Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol 166: 3392–3401

    PubMed  CAS  Google Scholar 

  • Mariani F, Cappelli G, Riccardi G, Colizzi V (2000) Mycobacterium tuberculosis H37Rv comparative gene-expression analysis in synthetic medium and human macrophage. Gene 253: 281–291

    PubMed  CAS  Google Scholar 

  • Martinez O, Noiseux C, Martin J, Lara V (2001) Reactivation tuberculosis in a patient with anti-TNF-a treatment. Am J Gastroenterol 96: 1665–1666

    Google Scholar 

  • Mayordomo L, Marenco JL, Gomez-Mateos J, Rejon E (2002) Pulmonary miliary tuberculosis in a patient with anti-TNF-alpha treatment. Scand J Rheumatol 31: 44–45

    PubMed  Google Scholar 

  • McBride KM, Banninger G, McDonald C, Reich NC (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-a. EMBO J 21: 1754–1763

    PubMed  CAS  Google Scholar 

  • McKinney JD (2000) In vivo veritas: the search for TB drug targets goes live. Nat Med 6: 1330–133: 1754–1763

    Google Scholar 

  • McKinney JD, Jacobs WR Jr, Bloom BR (1998) Persisting problems in tuberculosis. In: Krause, R, Galin JI, Fauci AS (eds) Emerging Infections. Academic Press, New York, pp 51–146

    Google Scholar 

  • McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen b, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738

    PubMed  CAS  Google Scholar 

  • McKinney JD, Bloom BR, Modlin RL (2001) Tuberculosis and leprosy. In: Austen KF, Frank MM, Atkinson JP, Cantor H (eds) Samter’s Immunologic Diseases, 6th Ed. Lippincott Williams & Wilkins, Philadelphia, pp 985–1002

    Google Scholar 

  • Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ (2001) Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 166: 4074–4082

    PubMed  CAS  Google Scholar 

  • Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human Tolllike receptors mediate cellular activation by M. tuberculosis. J Immunol 163: 3920–3926

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135–144

    PubMed  CAS  Google Scholar 

  • Melendez AJ, Bruetschy L, Floto RA, Harnett MM, Allen JM (2001) Functional coupling of Fc?RI to nicotinamide adenine dinucleotide phosphate (reduced form) oxidative burst and immune complex trafficking requires the activation of phospholipase D1. Blood 98: 3421–3428

    PubMed  CAS  Google Scholar 

  • Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683–1693

    PubMed  CAS  Google Scholar 

  • Melillo G, Taylor LS, Brooks A, Cox GW, Varesio L (1996) Regulation of inducible nitric oxide synthase expression in IFN-gamma-treated murine macrophages cultured under hypoxic conditions. J Immunol 157: 2638–2644

    PubMed  CAS  Google Scholar 

  • Melo M, Catchpole I, Hagger G, RW S (2000) Utilization of CD11b knockout mice to characterize the role of complement receptor 3 (CR3, CD11b/CD18) in the growth of Mycobacterium tuberculosis in macrophages. Cell Immunol 10: 13–23

    Google Scholar 

  • Metchnikoff E (1880) Uber die intracellulare Verdauung bei coelenteraten. Zool Anzeiger 3: 261–263

    Google Scholar 

  • Metchnikoff E (1884) Untersuchungen uber die intracellulare Verdauung bei Wirbelosen Thieren. Arb Zool Inst Wein 5: 141–168

    Google Scholar 

  • Metchnikoff E (1888) Uber die phagocytaere Rolle der Tuberkeliesenzellen. Arch Pathol Anat 113: 63–94

    Google Scholar 

  • Metchnikoff E (1893) Lectures on the comparative pathology of inflammation. Kegan, Paul, Trübner, Trench, London.

    Google Scholar 

  • Metchnikoff E (1905) Immunity in the Infectious Diseases. MacMillan, New York.

    Google Scholar 

  • Metchnikoff O (1921) Life of Elie Mecthnikoff. Houghton Mifflin, Boston, ppll6–117

    Google Scholar 

  • Meylan PP, Richman DD, Korthbluth RS (1992) Reduced intracellular growth of myco-bacteria in human macrophages cultivated at physiologic oxygen pressure. Am Rev Respir Dis 145: 947–953

    PubMed  CAS  Google Scholar 

  • Misra S, Miller GJ, Hurley JH (2001) Recognizing phosphatidylinositol 3-phosphate. Cell 107: 559–562

    PubMed  CAS  Google Scholar 

  • Mitchison DA (1985) The action of anti-tuberculous drugs in short course-chemotherapy. Tubercle 66: 219–225.

    PubMed  CAS  Google Scholar 

  • Mizrahi V, Andersen SJ (1998) DNA repair in Mycobacterium tuberculosis: what have we learnt from the genome sequence? Mol Microbiol 29: 1331–1339

    PubMed  CAS  Google Scholar 

  • Mizuno K, Okamoto H, Horio T (2001) Muramyl dipeptide and mononuclear cell supernatant induce Langhans-type cells from human monocytes. J Leukoc Biol 70: 386–394

    PubMed  CAS  Google Scholar 

  • Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193: 271–280

    PubMed  CAS  Google Scholar 

  • Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MM, Flynn JL, Chan J (2001) Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69: 1847–1855

    PubMed  CAS  Google Scholar 

  • Moody DB, Porcelli SA (2001) CD1 trafficking: invariant chain gives a new twist to the tale. Cell 15: 861–865

    CAS  Google Scholar 

  • Moreira AL, Tsenova L, Aman MH, Bekker L-G, Freeman S, Mangaliso B, Shroder U, Jagirdar J, Rom WN, Tovey MG, Freedman VH, Kaplan G (2002) Mycobacterial antigens exacerbate disease manifestations in Mycobacterium tuberculosis-infected mice. Infect Immun 70: 2100–2002

    PubMed  CAS  Google Scholar 

  • Morse D, Brothmed D, Ucko P (1964) Tuberculosis in ancient Egypt. Am Rev Respir Dis 90: 524–541

    PubMed  CAS  Google Scholar 

  • Most J, Neumayer HP, Dierich MP (1990) Cytokine-induced generation of multinucleated giant cells in vitro requires interferon-? and expression of LFA-1. Eur J Immunol 20: 1661–1667

    PubMed  CAS  Google Scholar 

  • Moya MP, Gow AJ, McMahon TJ, Toone EJ, Cheifetz IM, Goldberg RN, Stamler JS (2001) S-nitrosothiol repletion by an inhaled gas regulates pulmonary function. Proc Natl Acad Sci USA 98: 5792–5797

    PubMed  CAS  Google Scholar 

  • Muller H, Kruger S (1994) Immunohistochemical analysis of cell composition and in situ cytokine expression in HIV- and non-HIV-associated tuberculous lymphadenitis. Immunobiology 191: 354–368

    PubMed  CAS  Google Scholar 

  • Muller WM, Steinman R,M Cohn ZA (1983) Membrane proteins of the vacuolar system. III. Further studies on the composition and recycling of endocytic vacuole membrane in cultured macrophages. J Cell Biol 96: 29–36

    PubMed  CAS  Google Scholar 

  • Mullock BM, Bright NA, Fearon CW, Gray SR, Luzio JP (1998) Fusion of lysosomes with late endosomes produces a hybrid organelle with intermediate density and is NSF dependent. J Cell Biol 140: 591–601

    PubMed  CAS  Google Scholar 

  • Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, Akino T, Kuroni Y (2001) Surfactant protein A inhibits peptidoglycan-induced TNF-alpha secretion in U937 cells and alveolar macrophages by direct inhibition with toll-like receptor 2. J Biol Chem 277: 6830–6837

    PubMed  Google Scholar 

  • Murray HW (1996) Current and future clinical applications of interferon-gamma in host antimicrobial defense. Intensive Care Med 22: S456–S46l

    PubMed  Google Scholar 

  • Murray PJ (1999) Defining the requirements for immunological control of mycobacterial infections. Trends Microbiol 7: 366–371

    PubMed  CAS  Google Scholar 

  • Musser JM, Amin A, Ramaswamy S (2000) Negligible genetic diversity of Mycobacterium tuberculosis host immune system protein targets: evidence for limited selective pressure. Genetics 155: 7–16

    PubMed  CAS  Google Scholar 

  • Naegel GP, Young KR, Reynolds HY (1984) Receptors for human IgG subclasses on human alveolar macrophages. Am Rev Resp Dis 129: 413–418

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Miyaura C, Abe E, Suda T, Horiguchi M, Suda T (1987) Fusion and activation of human alveolar macrophages induced by recombinant interferon-? and their suppression by dexamethasone. Am Rev Respir Dis 136: 916–921

    PubMed  CAS  Google Scholar 

  • Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79–319–326

    Google Scholar 

  • Nathan CF, Kaplan G, Levis WR, Nusrat A, Witmer MD, Sherwin SA, Job CK, Horowitz CR, Steinman R,M Cohn ZA (1986) Local and systemic effects of intradermal recombinant interferon-? in patients with lepromatous leprosy. N Engl J Med 315: 6–15

    PubMed  CAS  Google Scholar 

  • Nathan CF, Murray HW, Weibe ME, Rubin BY (1983) Identification of interferon-у as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158: 670–685

    PubMed  CAS  Google Scholar 

  • Nathan CF, Prendergast TJ, Weibe ME, Stanley ER, Platzer E, Remold HG, Weite K, Rubin BY, Murray HW (1984) Activation of human macrophages: comparison of other cytokines with interferon-?. J Exp Med 1600: 600–605

    Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates and the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 8841–8848

    PubMed  CAS  Google Scholar 

  • Nau GJ, Richmond JFL, Sclesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 99: 1503–1508

    PubMed  CAS  Google Scholar 

  • Nguyan H, Ramana CV, Bayes J, Stark GR (2001) Roles of phosphatidylinosotol 3-kinase in interferon-?-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression. J Biol Chem 276: 33361–33368

    Google Scholar 

  • North RJ, LaCourse R, Ryan L, Gros P (1999) Consequence of Nramp1 deletion to My cobacterium tuberculosis infection in mice. Infect Immun 67: 5811–5814

    PubMed  CAS  Google Scholar 

  • Nystrom T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176: 159–164

    PubMed  CAS  Google Scholar 

  • O’Brien L, Carmichael J, Lowrie DB, Andrew PW (1994) Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. 62: 5187–5190

    Google Scholar 

  • O’Brien S, Andrew PW (1991) Guinea pig alveolar macrophage killing of Mycobacterium tuberculosis in vitro does not require hydrogen peroxide or hydroxyl radical. Microbiol Path 11: 229–236

    Google Scholar 

  • Oh YK, Swanson JA (1996) Different fates of phagocytosed particles after delivery into macrophage lysosomes. J Cell Biol 132: 585–593

    PubMed  CAS  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771

    PubMed  CAS  Google Scholar 

  • Pabst MJ, Gross JM, Brozna JP, Goren MB (1988) Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J Immunol 140: 634–640

    PubMed  CAS  Google Scholar 

  • Pace JL, Russell SW, Schreiber RD, Altman A, Katz DH (1983) Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci USA 80: 3782–3786

    PubMed  CAS  Google Scholar 

  • Pancholi P, Mizra A, Bhardwaj N, Steinman RM (1993) Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260: 984–986

    PubMed  CAS  Google Scholar 

  • Parrish NM, Dick JD, Bishai WR (1998) Mechanism of latency in Mycobacterium tuberculosis. Trends Microbiol. 6: 107–112.

    PubMed  CAS  Google Scholar 

  • Pasula R, Wright JR, Kachel DL, Martin WJ (1999) Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. J Clin Invest 103: 483–490

    PubMed  CAS  Google Scholar 

  • Pasula R, Wisniowski P, Martin WJ (2002) Fibronectin facilitates Mycobacterium tuberculosis attachment to murine alveolar macrophages. Infect Immun 70: 1287–1292

    PubMed  CAS  Google Scholar 

  • Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G, Hill AV, Lalvani A (2001) Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167: 5217–5225

    PubMed  CAS  Google Scholar 

  • Pinckard JK, Sheehan KC, Schreiber RD (1997) Ligand-induced formation of p55 and p75 tumor necrosis factor heterocomplexes in intact cells J Biol Chem 272: 10784–10789

    CAS  Google Scholar 

  • Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA (2001) Cu,Zn Superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69: 4980–4987

    PubMed  CAS  Google Scholar 

  • Piddington DL, Kashkouli A, Buchmeier NA (2000) Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. Infect Immun 68: 4518–4522

    PubMed  CAS  Google Scholar 

  • Pieters J (2001) Entry and survival of pathogenic mycobacteria in macrophages. Microbe Infect 3: 249–255

    CAS  Google Scholar 

  • Pitt A, Mayorga LS, Schwartz AL, Stahl PD (1992) Transport of phagosomal components to an endosomal compartment. J Biol Chem 267: 126–132

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Jackson BK, Beachey EH, Kang AH (1982) Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen- and mitogen-stimulated lymphocytes. J Exp Med 155: 168–178

    PubMed  CAS  Google Scholar 

  • Prada-Delgado A, Carrasco-Marin E, Bokoch G, Alvarez-Dominiguez C (2001) Interferon-? listericidal action is mediated by novel Rab5a functions at the phagosomal environment. J Biol Chem 276: 19059–19065

    PubMed  CAS  Google Scholar 

  • Prigozy TI, Seiling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6: 187–197

    PubMed  CAS  Google Scholar 

  • Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ (1994) CD14 is a pattern recognition receptor. Immunity 1: 509–516

    PubMed  CAS  Google Scholar 

  • Purkayastha A, McCue LA, McDonough KA (2002) Identification of a Mycobacterium tuberculosis putative classical nitroreductase gene whose expression is coregulated with that of the acr gene within macrophages, in standing versus shaking cultures and under low oxygen conditions. Infect Immun 70: 1518–1529

    PubMed  CAS  Google Scholar 

  • Qureshi SA, Kim RM, Konteatis Z, Biazzo DE, Motamedi H, Rodriguez R, Boice JA, Calaycay JR, Bednarek MA, Griffin P, Gao YD, Chapman K, Mark DF (1999) Mimicry of erythropoietin by a non-peptide molecule. Proc Natl Acad Sci USA 96: 12156–12161

    PubMed  CAS  Google Scholar 

  • Raad I, Hachem R, Leeds N, Sawaya R, Salem Z, Atweh S (1996) Use of adjunctive treatment with interferon-? in an immunocompromised patient who had refractory multi-drug resistant tuberculosis of the brain. Clin Infect Dis 22: 572–574

    PubMed  CAS  Google Scholar 

  • Ragno S, Romano M, Howell S, Pappin DJC, Jenner PJ, Colston MJ (2001) Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 104: 99–108

    PubMed  CAS  Google Scholar 

  • Ramachandra L, Noss E, Bomm WH, Harding CV (2001) Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J Exp Med 194: 1421–1432

    PubMed  CAS  Google Scholar 

  • Raman S, Song T, Puyang X, Bardarov S, Jacobs WR, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183: 6119–6125

    PubMed  CAS  Google Scholar 

  • Ramana CV, Gil MP, Scheiber RD, Stark GR (2002) Statl-dependent and independent pathways in IFN-y-dependent signalling. Trends Immunol 23: 96–101

    PubMed  CAS  Google Scholar 

  • Reichel H, Koeffler HP, Norman AW (1987) Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-?-stimulated normal human bone marrow and alveolar macrophages. J Biol Chem 262: 10931–10987

    PubMed  CAS  Google Scholar 

  • Reynolds HY, Newball HH (1974) Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Clin Lab Med 84: 559–573

    CAS  Google Scholar 

  • Reyrat J-M, Berthet F-X, Giquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilisation for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci USA 92: 8768–8772

    PubMed  CAS  Google Scholar 

  • Rhoades ER, Orme IM (1997) Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect Immun 65: 1189–1195

    PubMed  CAS  Google Scholar 

  • Riches DW, Chan ED, Zahradka EA, Winston BW, Remigio LK, Lake FR (1998) Cooperative signaling by tumor necrosis factor receptors CDl2Oa (p55) and CDl2Ob (p75) in the expression of nitric oxide and inducible nitric oxide synthase by mouse macrophages. J Biol Chem 273: 22800–22806

    PubMed  CAS  Google Scholar 

  • Riley RL (1960) Apical localization of pulmonary tuberculosis. Bull Johns Hopkins Hospital 106: 232–239

    Google Scholar 

  • Roach DR, Briscoe H, Saunders B, France MP, Riminton S, Britton WJ (2001) Secreted lymphotoxin-a is essential for the control of an intracellular bacterial infection. J Exp Med 193: 239–246

    PubMed  CAS  Google Scholar 

  • Roach DR, BrIscoe H, Baumgart K, Rathjen DA, Britton WJ (1999) Tumor necrosis factor (TNF) and a TNF-mimetic peptide modulate the granulomatous response to Mycobacterium bovis BCG infection in vivo. Infect Immun 67: 5473–5476

    PubMed  CAS  Google Scholar 

  • Robinson DS, Ying S, Taylor IK, Wangoo A, Mitchell DM, Kay AB, Hamid Q, Shaw RJ (1994) Evidence for a Thl-bronchoalveolar T-cell subset and predominance of interferon-gamma gene activation in pulmonary tuberculosis. Am J Respir Crit Care Med 149: 989–993

    PubMed  CAS  Google Scholar 

  • Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D (1998) 1,25-dihydroxyvitamin D3 induces nitric oxide synthase and supresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66: 5314–5321

    PubMed  CAS  Google Scholar 

  • Rook GA, Steele J, Ainsworth M, Champion Br (1986a) Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma interferon on human monocytes and murine peritoneal macrophages. Immunology 59: 333–338

    PubMed  CAS  Google Scholar 

  • Rook GA, Steele J, Fraher L, Barker S, Karmali R, O’Riordan J, Stanford J (1986b) Vitamin D3, gamma interferon, and control of the proliferation of Mycobacterium tuberculosis by human macrophages. Immunology 57: 159–163

    PubMed  CAS  Google Scholar 

  • Rous P (1925) The relative reaction within living mammalian tissues. II. On the mobilization of acid material within cells, and the reaction as influenced by the cell state. J Exp Med 41: 399–411

    PubMed  CAS  Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: Here today, and here tomorrow. Nat Rev Mol Cell Biol 2: 569–586

    PubMed  CAS  Google Scholar 

  • Russell DG, Dant J, Sturgill-Koszycki S (1996) Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 156: 4764–4773

    PubMed  CAS  Google Scholar 

  • Ryu S, Park Y, Bai G, Kim S, Park S, Kang S (2000) 3’UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 4: 577–580

    PubMed  CAS  Google Scholar 

  • Saginario C, Sterling H, Beckers C, Kobyashi R, Solimena M, Ullu E, Vigery A (1998) MFR, a putative receptor mediating fusion of macrophages. Mol Cell Biol 18: 6213–6223

    PubMed  CAS  Google Scholar 

  • Salo WL, Aufderheide AC, Buikstra J, Holcomb TA (1994) Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci USA 91:2091–2094

    PubMed  CAS  Google Scholar 

  • Sandau KB, Fandrey J, Brune B (2001) Accumulation of HIF-alpha under the influence of nitric oxide. Blood 97: 1009–1015

    PubMed  CAS  Google Scholar 

  • Saunders BM, Frank AA, Orme IM (1999) Granuloma formation is required to contain bacillus growth and delay mortality in mice chronically infected with Mycobacterium tuberculosis. Immunology 98: 324–328

    PubMed  CAS  Google Scholar 

  • Savedra RJ, Delude R, Ingalls R, Fenton M, Golenbock D (1996) Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. J Immunol 157: 2549–2554

    PubMed  CAS  Google Scholar 

  • Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J (2001) The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69: 7711–7717

    PubMed  CAS  Google Scholar 

  • Scannell G, Waxman K, Kaml GJ, Ioli G, Gatanaga T, Yamamoto R, Granger GA (1993) Hypoxia induces a human macrophage cell line to release tumor necrosis factor-a and its soluble receptors in vitro. J Surg Res 54: 281–285

    PubMed  CAS  Google Scholar 

  • Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160: 1290–1296

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780

    PubMed  CAS  Google Scholar 

  • Schlessinger LS, Hull SR, Kaufman TM (1994) Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152: 4070–4079

    Google Scholar 

  • Schlessinger LS, Kaufman TM, Iyer S, Hull SR, Marchiando LK (1996) Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J Immunol 157: 4568–4575

    Google Scholar 

  • Schorey JS, Carroll MC, Brown EJ (1997) A macrophage invasion mechanism of pathogenic mycobacteria. Science 277: 1091–1093

    PubMed  CAS  Google Scholar 

  • Schreiber RD, Pace JL, Russell SW, Altman A, Katz DH (1983) Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol 131: 826–832

    PubMed  CAS  Google Scholar 

  • Schwander SK, Torres M, Carranza CC, Escobedo D, Tary-Lehman M, Anderson P, Toossi Z, Ellner JJ, Rich EA, Sada E (2000) Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. J Immunol 165: 1479– 1485

    PubMed  CAS  Google Scholar 

  • Segal B, Leto T, Gallin J, Malech H, Holland S (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79: 170–200

    PubMed  CAS  Google Scholar 

  • Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the Jak/STAT signaling pathway. Oncogene 19: 2645–2656

    PubMed  CAS  Google Scholar 

  • Semenza GL (2001) HIF-1 and mechanisms of oxygen sensing. Curr Opin Cell Biol 13: 167–171

    PubMed  CAS  Google Scholar 

  • Sharma SK, Pande JN, Singh YN, Verma K, Kathait SS, Khare SD, Malaviya AN (1992) Pulmonary and immunologic abnormalities in miliary tuberculosis. Am Rev Respir Dis 145: 1167–1171

    PubMed  CAS  Google Scholar 

  • Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis gene encoding alpha-crystallin. Proc Natl Acad Sci U S A. 98:7534–9

    PubMed  CAS  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29–38

    PubMed  CAS  Google Scholar 

  • Sikora A, Lui J, Brosnan C, Buell G, Chessel I, Bloom BR (1999) Purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 163: 558–561

    PubMed  CAS  Google Scholar 

  • Simonsen A, Gaulier J-M, D’Arrigo A, Stenmark H (1999) The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274: 28857–28860

    PubMed  CAS  Google Scholar 

  • Sirakoya TD, Thirumala AK, Dubey VS, Sprecher H, Kolattukudy PE (2001). The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 276: 16833–16839

    Google Scholar 

  • Sly LM, Lopez M, Nauseef WN, Reiner NE (2001) la,25-dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 276: 35482–35493

    PubMed  CAS  Google Scholar 

  • Smith S, Liggitt D, Jeromsky E, Tan X, Skerrett SJ, Wilson CB (2002) Local role of tumor necrosis factor alpha in the pulmonary inflammatory response to Mycobacterium tuberculosis infection. Infect Immun 70: 2082–2089

    PubMed  CAS  Google Scholar 

  • Soler P, Boussaud V, Moreau J, Bergeron A, Bonnette P, Hance AJ, Tazi A (1999) In situ expression of B7 and CD40 costimulatory molecules by normal human lung macrophages and epitheloid cells in tuberculoid granulomas. Clin Exp Immunol 116: 332–339

    PubMed  CAS  Google Scholar 

  • Spector, M.P. (1998) The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40: 233–279

    PubMed  CAS  Google Scholar 

  • Springer B, Master S, Sander P, Zahrt T, McFalone M, Song J, Papavinasasundaram KG, Colston MJ, Boettger E, Deretic V (2001) Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpc inactivation. Infect Immun 69: 5967–5973

    PubMed  CAS  Google Scholar 

  • St John G, Brot N, Ruan J, Erdjument-Bromage H, Tempst P, Weissbach H, Nathan C (2001) Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci USA 98: 9901–9906

    Google Scholar 

  • Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin R (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 1684–1687

    PubMed  CAS  Google Scholar 

  • Sterling H, Saginario C, Vignery A (1998) CD44 occupancy prevents macrophage multinucleation. J Cell Biol 143: 837–847

    PubMed  CAS  Google Scholar 

  • Stewart GR, Erht S, Riley L,W Dale JW, McFadden J (2000) Deletion of the putative antioxidant noxRl does not alter the virulence of Mycobacterium tuberculosis H37Rv. Tuber Lung Dis 80: 237–242

    PubMed  CAS  Google Scholar 

  • Sugawara I, Yamada H, Kazumi Y, Doi N, Otomo K, Aoki T, Mizuno S, Udagawa T, Tagawa Y, Iwakura Y (1998) Induction of granulomas in interferon-gamma-deficient mice by avirulent but not by virulent strains of Mycobacterium tuberculosis. J Med Micobiol 47: 87–877

    Google Scholar 

  • Surkova LK, Shpakovskaia NS, Duis’mikeeva ML (1999) Contribution of immune complex pathological reactions to immunogenesis of pulmonary tuberculosis. Probl Tuberk 6: 46–50

    PubMed  Google Scholar 

  • Suzuki K, Tsuyuguchi K, Matsumoto H, Niimi A, Tanaka E, Amitani R (2000) Effect of proton pump inhibitor alone or in combination with clathrinomycin on mycobacterial growth in human macrophages. FEMS Microbiol Lett 182: 69–72

    PubMed  CAS  Google Scholar 

  • Takashima T, Ohnisji K, Tsuyuguchi I, Kishimoto S (1993) Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human monocytes by IFN-y and IL-4. J Immunol 150: 3002–3010

    PubMed  CAS  Google Scholar 

  • Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA, Taylor LS, Eagleston B, Secrest L, Southon EA, Reid SW, Tessarollo L, Bray M, McVicar DW, Kommschlies KL, Young HA, Biron CA, Sher A, Vande Woude GF (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. Proc Natl Acad Sci USA 97: 751–755

    PubMed  CAS  Google Scholar 

  • Teitelbaum R, Glatman-Freedman A, Chen B, Robbins JB, Unanue E, Casadevall A, Bloom BR (1998) A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci USA 95: 15688–15693

    PubMed  CAS  Google Scholar 

  • Tendier DS, Bao C, Wang T, Huang EL, Ratovitski EA, Pardoll DA, Lowenstein CJ (2001) Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res 61: 3682–3688

    Google Scholar 

  • Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa M, Engele MT, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom BR, Modlin RL (2001) Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291: 1544–1547

    PubMed  CAS  Google Scholar 

  • Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192: 1016–1018

    PubMed  CAS  Google Scholar 

  • Ting LM, Kim AC, Cattamanchi A, Ernst JD (1999) Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 163: 3898–3906

    PubMed  CAS  Google Scholar 

  • Ullrich H-J, Beatty WL, Russell DG (1999) Direct delivery of procathepsin D to phagosomes: implications for phagosome biogenesis and parasitism by Mycobacterium. Eur J Cell Biol 78: 739–748

    PubMed  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999a) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811–815

    PubMed  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD, Aderem A (1999b) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96: 14459–14463

    PubMed  CAS  Google Scholar 

  • Via LE, Fratti RA, McFalcone M, Pagan-Ramos E, Deretic D, Deretic V (1997) Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111: 897–905

    Google Scholar 

  • Vidal M, Ramana CV, Dusso AS (2002) Statl-vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and enhance statl-mediated transcription. Mol C ell Biol 22: 2777–2787

    CAS  Google Scholar 

  • Vieira OV, Botelho R,J Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III phosphatidyl 3-kinases in phagosome formation and maturation. J Cell Biol 155: 19–25

    PubMed  CAS  Google Scholar 

  • Voorhout WF, Veenendaal T, Kuroki Y, Ogasawa Y, van Golde LM, Geuze HJ (1992) Immunocytochemical localization of surfactant protein D (SP-D) in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 40: 1589–1597

    PubMed  CAS  Google Scholar 

  • Wagner TE, Huseby ES, Huseby JS (2002) Exaccerbation of Mycobacterium tuberculosis enteritis masquerading as Crohn’s disease after treatment with a tumor necrosis factor-a inhibitor. Am J Med 112: 67–69

    PubMed  Google Scholar 

  • Walker SR, Williams MC, Benson B (1986) Immunocytochemical localization of the major surfactant apoproteins in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 34: 1137–1148

    PubMed  CAS  Google Scholar 

  • Wang, C-h, Lui C-Y, Lin H-C, Yu C-T, Chung K, Kuo H (1998) Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible nitric oxide synthase upregulation in alveolar macrophages. Eur J Respir 11: 809–815

    CAS  Google Scholar 

  • Wang C, Lin H, Lui C, Huang K, Huang T, Yu C, Kuo H (2001) Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 5: 283–291

    PubMed  CAS  Google Scholar 

  • Wangoo A, Sparer T, Brown IN, Snewin VA, Janssen R, Thole J, Cook HT, Shaw RJ, Young DB (2001) Contribution of Th1 and Th2 cells to protection and pathology in experimental models of granulomatous lung disease. J Immunol 166: 3432–3439

    PubMed  CAS  Google Scholar 

  • Ward DM, Pevsner J, Scullion MA, Vaughn M, Kaplan J (2000) Syntaxin 7 and VAMP7 are soluble attachment JV-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Mol Biol Cell 11: 2327–2333

    PubMed  CAS  Google Scholar 

  • Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Ann Rev Microbiol 55: 139–163.

    CAS  Google Scholar 

  • Weikert LF, Edwards K, Chroneos ZC, Hager C, Hoffman L, Shepherd VL (1997) SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol 272: L989–L995

    PubMed  CAS  Google Scholar 

  • Weikert LF, Lopez JP, Abdolrasulnia R, Chroneos ZC, Shepherd VL (2000) Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279: L216–L223

    PubMed  CAS  Google Scholar 

  • Weinberg JB, Hobbs MB, Misukonis MA (1984) Recombinant human ?-interferon induced human monocyte prokaryon formation. Proc Natl Acad Sci USA 81: 4554–4557

    PubMed  CAS  Google Scholar 

  • West JB (2000) Respiratory physiology. Lippencot Williams & Wilkins, Philadelphia, pp 45–61

    Google Scholar 

  • World Health Organization (1998) WHO Expert Committee on Leprosy. World Health Organ Tech Rep Ser 874: 1–43

    Google Scholar 

  • World Health Organization (2000) Global tuberculosis report. WHO Press, Geneva

    Google Scholar 

  • Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson RN (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355: 618–621

    PubMed  CAS  Google Scholar 

  • Williams G, Williams W (1983) Granulomatous inflammation-a review. Clin Path 36: 723–733

    CAS  Google Scholar 

  • Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, Allen P, Russell DG (1994) Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153: 2568–2578

    PubMed  CAS  Google Scholar 

  • Yamashita K, Iwamoto T, Iijima S (1978) Immunohistochemical observation of lysozyme in macrophages and giant cells in human granulomas. Acta Pathol Jpn 28: 689–695

    PubMed  CAS  Google Scholar 

  • Yang E, Wen Z, Haspel R, Zhang J, Darnell JE Jr (1999a) The linker domain of Statl is required for gamma interferon-driven transcription. Mol Cell Biol 19: 5106–5112

    PubMed  CAS  Google Scholar 

  • Yang RB, Mark MR, Gurney AL, Godowski PJ (1999b) Signaling events induced by lipopolysaccharide-activated toll-like receptor 2. J Immunol 163: 639–643

    PubMed  CAS  Google Scholar 

  • Yeager H, Lacey J, Smith LR, LeMaistre CA (1967) Quantitative studies of mycobacterial populations in sputum and saliva. Am Rev Respir Dis 98: 998–1004

    Google Scholar 

  • Yu K, Mitchell C, Xing Y, Magliozzo RS, Bloom BR, Chan J (1999) Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuberc Lung Dis 79: 191–198

    CAS  Google Scholar 

  • Zaffran Y, Zhang L, Ellner JJ (1998) Role of CR4 in Mycobacterium tuberculosis-human macrophages binding and signal transduction in the absence of serum. Infect Immun 66: 4541–4544

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2: 107–119

    PubMed  CAS  Google Scholar 

  • Zhou H, Duncan RF, Robinson TW, Gao L, Forman HJ (1997) Ca2+-dependent p47Phox translocation in hydroperoxide modulation of the alveolar macrophage respiratory burst. Am J Physiol 273: L1042–1047

    PubMed  CAS  Google Scholar 

  • Zimmermann M (1979) Pulmonary and osseous tuberculosis in an Egyptian mummy. Bull NY Acad Med 55: 604–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

MacMicking, J.D., McKinney, J.D. (2003). Macrophage Immunity and Mycobacterium tuberculosis . In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics