Skip to main content

Targeting the Chemokine System

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

The chemokine superfamily consists of small, basic, heparin-binding proteins that play a pivotal role in basal trafficking as well as in activation and recruitment of leukocytes from the circulation to sites of inflammation. The chemokines are a subset of the cytokine family and are distinguished from other cytokines in that they activate seven-transmembrane (7TM) G protein-coupled receptors. They are a large family, with approximately 50 members identified to date, and for which 19 receptors have been described. The chemokine family is divided structurally into four subfamilies CXC, CC, CX3C and C, based on the position of the amino terminal cysteine residues. The majority of chemokines fall into the CXC or CC groups (also referred to as α and β subclasses respectively), and hence have been the most extensively studied. The known chemo-kine/receptor pairs are depicted in Fig. 1, which also indicates a second division based on the recent advances in chemokine biology—chemokines are either expressed constitutively and control basal trafficking or homing, or are inducible, and are involved in inflammation. Chemokines were generally named according to the function that was identified such as monocyte chemoattractant protein (MCP) or neutrophil activating peptide (NAP) but since many chemokines were concomitantly identified in more than one laboratory, a single sequence was attributed more than one name. Therefore a systematic nomenclature was recently adopted (Zlotnik and Yoshie 2000) and both common and systematic names are shown in Fig. 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajuebor MN, Hogaboam CM, Kunkel SL, Proudfoot AE, Wallace JL (2001) The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat. J Immunol 166:552–558

    PubMed  CAS  Google Scholar 

  • Alcami A, Symons JA, Collins PD, Williams TJ, Smith GL (1998) Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 160:624–633

    PubMed  CAS  Google Scholar 

  • Anders HJ, Vielhauer V, Frink M, Linde Y, Cohen CD, Blattner SM, Kretzler M, Strutz F, Mack M, Grone HJ, Onuffer J, Horuk R, Nelson PJ, Schlondorff D (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 109:251–259

    PubMed  CAS  Google Scholar 

  • Appay V, Brown A, Cribbes S, Randle E, Czaplewski LG (1999) Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants. J Biol Chem 274:27505–27512

    PubMed  CAS  Google Scholar 

  • Arenzana-Seisdedos F, Virelizier JL, Rousset D, Clark-Lewis I, Loetscher P, Moser B, Baggiolini M (1996) HIV blocked by chemokine antagonist. Nature 383:400

    PubMed  CAS  Google Scholar 

  • Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 96:5698–5703

    PubMed  CAS  Google Scholar 

  • Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1 alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 96:6873–6878

    PubMed  CAS  Google Scholar 

  • Barnes DA, Tse J, Kaufhold M, Owen M, Hesselgesser J, Strieter R, Horuk R, Perez HD (1998) Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant-induced arthritis model. J Clin Invest 101:2910–2919

    PubMed  CAS  Google Scholar 

  • Beck LA, Dalke S, Leiferman KM, Bickel CA, Hamilton R, Rosen H, Bochner BS, Schleimer RP (1997) Cutaneous injection of RANTES causes eosinophil recruitment: comparison of nonallergic and allergic human subjects. J Immunol 159:2962–2972

    PubMed  CAS  Google Scholar 

  • Berger EA. HIV entry and tropism: the chemokine receptor connection. AIDS 11, S3–S16. 1997

    PubMed  Google Scholar 

  • Bondeva T, Pirola L, Bulgarelli-Leva G, Rubio I, Wetzker R, Wymann MP (1998) Bifurcation of lipid and protein kinase signals of PBKgamma to the protein kinases PKB and MAPK. Science 282:293–296

    PubMed  CAS  Google Scholar 

  • Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Jr., Broxmeyer HE, Charo IF (1997) Impaired monocyte migration and reduced type 1 (Thl) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561

    PubMed  CAS  Google Scholar 

  • Bridgeman A, Stevenson PG, Simas JP, Efstathiou S (2001) A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194:301–312

    PubMed  CAS  Google Scholar 

  • Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036

    PubMed  CAS  Google Scholar 

  • Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA, Siani MA, Yamamoto T, Harrison JK, Feng L (1998) In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med 188:193–198

    PubMed  CAS  Google Scholar 

  • Cinamon G, Shinder V, Alon R (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2:515–522

    PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil Chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266:23128–23134

    PubMed  CAS  Google Scholar 

  • Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV- suppressive factors produced by CD8+ T cells. Science 270:1811–1815

    PubMed  CAS  Google Scholar 

  • Colditz I, Zwahlen R, Dewald B, Baggiolini M (1989) In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am J Pathol 134:755–760

    PubMed  CAS  Google Scholar 

  • Colditz IG, Zwahlen RD, Baggiolini M (1990) Neutrophil accumulation and plasma leakage induced in vivo by neutrophil-activating peptide-1. J Leukoc Biol 48:129–137

    PubMed  CAS  Google Scholar 

  • Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T Cell Alpha Chemoattractant (I-TAC): A Novel Non-ELR CXC Chemokine with Potent Activity on Activated T Cells through Selective High Affinity Binding to CXCR3. J Exp Med 187:2009–2021

    PubMed  CAS  Google Scholar 

  • Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269:1583–1585

    PubMed  CAS  Google Scholar 

  • Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, Hipkin, RW. (2001) Human interferon-inducible 10-kDa protein and human interferon-inducipble T cell alpha chemoattractant are allotopic ligands for human CXCR3: Differential binding to receptor states. Mol Pharmacol. 59:707–715

    PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    PubMed  CAS  Google Scholar 

  • Devalaraja MN, Richmond A (1999) Multiple chemotactic factors: fine control or redundancy? Trends Pharmacol Sci 20:151–156

    PubMed  CAS  Google Scholar 

  • Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ, Allaway GP, Sakmar TP, Henson G, De Clercq E, Moore JP (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4:72–77

    PubMed  CAS  Google Scholar 

  • Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 97:5639–5644

    PubMed  CAS  Google Scholar 

  • Dustin ML, Springer TA (1991) Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol 9:27–66

    PubMed  CAS  Google Scholar 

  • Evans GF, Snyder YM, Butler LD, Zuckerman SH (1989) Differential expression of inter-leukin-1 and tumor necrosis factor in murine septic shock models. Circ Shock 29:279–290

    PubMed  CAS  Google Scholar 

  • Farber JM (1990) A Macrophage mRNA Selectively Induced by {gamma}-lnterferon Encodes a Member of the Platelet Factor 4 Family of Cytokines. PNAS 87:5238–5242

    PubMed  CAS  Google Scholar 

  • Fine JS, Jackson JV, Rojas-Triana A, Bober LA (2000) Evaluation of chemokine- and phlogistin-mediated leukocyte Chemotaxis using an in vivo sponge model. Inflammation 24:331–346

    PubMed  CAS  Google Scholar 

  • Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047

    PubMed  CAS  Google Scholar 

  • Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microen-vironments in secondary lymphoid organs. Cell 99:23–33

    PubMed  CAS  Google Scholar 

  • Foster SJ, Aked DM, Schroder JM, Christophers E (1989) Acute inflammatory effects of a monocyte-derived neutrophil-activating peptide in rabbit skin. Immunology 67:181–183

    PubMed  CAS  Google Scholar 

  • Foxman EF, Campbell JJ, Butcher EC (1997) Multistep navigation and the combinatorial control of leukocyte Chemotaxis. J Cell Biol 139:1349–1360

    PubMed  CAS  Google Scholar 

  • Gether U, Kobilka BK (1998) G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem 273:17979–17982

    PubMed  CAS  Google Scholar 

  • Ghosh S, Latimer RD, Gray BM, Harwood RJ, Oduro A (1993) Endotoxin-induced organ injury. Crit Care Med 21:S19–S24

    PubMed  CAS  Google Scholar 

  • Gillespie RD, Dolan MC, Piesman J, Titus RG (2001) Identification of an IL-2 binding protein in the saliva of the Lyme disease vector tick, Ixodes scapularis. J Immunol 166:4319–4326

    PubMed  CAS  Google Scholar 

  • Gong JH, Clark-Lewis I (1995) Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J Exp Med 181:631–640

    PubMed  CAS  Google Scholar 

  • Gong JH, Uguccioni M, Dewald B, Baggiolini M, Clark-Lewis I (1996) RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem 271:10521–10527

    PubMed  CAS  Google Scholar 

  • Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103:773–778

    PubMed  CAS  Google Scholar 

  • Grone HJ, Weber C, Weber KC, Grone EF, Rabelink T, Klier CM, Wells TC, Proudfoot AE, Schlondorff D, Nelson PJ (1999) Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEBJ 13:1371–1383

    CAS  Google Scholar 

  • Gunn MD, Nelken NA, Liao X, Williams LT (1997) Monocyte chemoattractant protein-1 is sufficient for the Chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J Immunol 158:376–383

    PubMed  CAS  Google Scholar 

  • Hajnicka V, Kocakova P, Slavikova M, Slovak M, Gasperik J, Fuchsberger N, Nuttall PA (2001) Anti-interleukin-8 activity of tick salivary gland extracts. Parasite Immunol 23:483–489

    PubMed  CAS  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 Rho-GEF by Galpha13. Science 280:2112–2114

    PubMed  CAS  Google Scholar 

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinosi-tide 3-kinase gamma in inflammation. Science 287:1049–1053

    PubMed  CAS  Google Scholar 

  • Hisada T, Hellewell PG, Teixeira MM, Malm MG, Salmon M, Huang TJ, Chung KF (1999) alpha4 integrin-dependent eotaxin induction of bronchial hyperresponsiveness and eosinophil migration in interleukin-5 transgenic mice. Am J Respir Cell Mol Biol 20:992–1000

    PubMed  CAS  Google Scholar 

  • Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bunemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8:157–165

    PubMed  CAS  Google Scholar 

  • Horuk R, Clayberger C, Krensky AM, Wang Z, Grone HJ, Weber C, Weber KS, Nelson PJ, May K, Rosser M, Dunning L, Liang M, Buckman B, Ghannam A, Ng HP, Islam I, Bauman JG, Wei GP, Monahan S, Xu W, Snider RM, Morrissey MM, Hesselgesser J, Perez HD (2001) A non-peptide functional antagonist of the CCR1 chemokine receptor is effective in rat heart transplant rejection. J Biol Chem 276:4199–4204

    PubMed  CAS  Google Scholar 

  • Hosaka S, Akahoshi T, Wada C, Kondo H (1994) Expression of the chemokine superfamily in rheumatoid arthritis. Clin Exp Immunol 97:451–457

    PubMed  CAS  Google Scholar 

  • Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726

    PubMed  CAS  Google Scholar 

  • Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D (1997) Roles of phospholipase C beta2 in chemoattractant-elicited responses. Proc Natl Acad Sci U S A 94:7971–7975

    PubMed  CAS  Google Scholar 

  • Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ (1994) Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179:881–887

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Kennedy KJ (1997) MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Thl/Th2 lymphocyte differentiation. J Leukoc Biol 62:681–687

    PubMed  CAS  Google Scholar 

  • Katanaev VL (2001) Signal transduction in neutrophil Chemotaxis. Biochemistry 66:351–368

    PubMed  CAS  Google Scholar 

  • Katschke KJ, Jr., Rottman JB, Ruth JH, Qin S, Wu L, LaRosa G, Ponath P, Park CC, Pope RM, Koch AE (2001) Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum 44:1022–1032

    PubMed  CAS  Google Scholar 

  • Kaufmann A, Salentin R, Gemsa D, Sprenger H (2001) Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human monocytes to macrophages. J Leukoc Biol 69:248–252

    PubMed  CAS  Google Scholar 

  • Kim KS, Rajarathnam K, Clark-Lewis I, Sykes BD (1996) Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett 395:277–282

    PubMed  CAS  Google Scholar 

  • Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Luttichau HR, Gerstoft J, Clapham PR, Clarklewis I, Wells TNC, Schwartz TW (1997) A broad-spectrum chemokine antagonist encoded by kaposis sarcoma- associated herpesvirus. Science 277:1656–1659

    PubMed  CAS  Google Scholar 

  • Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM (1992) Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 90:772–779

    PubMed  CAS  Google Scholar 

  • Koch AE, Kunkel SL, Harlow LA, Mazarakis DD, Haines GK, Burdick MD, Pope RM, Strieter RM (1994) Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J Clin Invest 93:921–928

    PubMed  CAS  Google Scholar 

  • Koch AE, Kunkel SL, Shah MR, Fu R, Mazarakis DD, Haines GK, Burdick MD, Pope RM, Strieter RM (1995) Macrophage inflammatory protein-1 beta: a C-C chemokine in osteoarthritis. Clin Immunol Immunopathol 77:307–314

    PubMed  CAS  Google Scholar 

  • Kopydlowski KM, Salkowski CA, Cody MJ, van Rooijen N, Major J, Hamilton TA, Vogel SN (1999) Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol 163:1537–1544

    PubMed  CAS  Google Scholar 

  • Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186:1757–1762

    PubMed  CAS  Google Scholar 

  • Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 94:12053–12058

    PubMed  CAS  Google Scholar 

  • Lalani AS, Graham K, Mossman K, Rajarathnam K, Clark-Lewis I, Kelvin D, McFadden G (1997) The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 71:4356–4363

    PubMed  CAS  Google Scholar 

  • Lalani AS, McFadden G (1997) Secreted poxvirus chemokine binding proteins. J Leukoc Biol 62:570–576

    PubMed  CAS  Google Scholar 

  • Laurence JS, Blanpain C, Burgner JW, Parmentier M, Liwang PJ (2000) CC chemokine MIP-1 beta can function as a monomer and depends on Phel3 for receptor binding.Biochemistry 39:3401–3409

    PubMed  CAS  Google Scholar 

  • Leonard EJ, Yoshimura T, Tanaka S, Raffeld M (1991) Neutrophil recruitment by intrader-mally injected neutrophil attractant/activation protein-1. J Invest Dermatol 96:690–694

    PubMed  CAS  Google Scholar 

  • Liang M, Mallari C, Rosser M, Ng HP, May K, Monahan S, Bauman JG, Islam I, Ghannam A, Buckman B, Shaw K, Wei GP, Xu W, Zhao Z, Ho E, Shen J, Oanh H, Subramanyam B, Vergona R, Taub D, Dunning L, Harvey S, Snider RM, Hesselgesser J, Morrissey MM, Perez HD (2000) Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J Biol Chem 275:19000–19008

    PubMed  CAS  Google Scholar 

  • Liu L, Lalani A, Dai E, Seet B, Macauley C, Singh R, Fan L, McFadden G, Lucas A (2000) The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J Clin Invest 105:1613–1621

    PubMed  CAS  Google Scholar 

  • Lloyd CM, Dorf ME, Proudfoot A, Salant DJ, Gutierrez-Ramos JC (1997) Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. J Leukoc Biol 62:676–680

    PubMed  CAS  Google Scholar 

  • Lusso P (2000) Chemokines and viruses: the dearest enemies. Virology 273:228–240

    PubMed  CAS  Google Scholar 

  • Luster AD, Weinshank RL, Feinman R, Ravetch JV (1988) Molecular and biochemical characterization of a novel gamma-interferon-inducible protein. J Biol Chem 263:12036–12043

    PubMed  CAS  Google Scholar 

  • Luttichau HR, Stine J, Boesen TP, Johnsen AH, Chantry D, Gerstoft J, Schwartz TW (2000) A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J Exp Med 191:171–180

    PubMed  CAS  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in C. Proc Natl Acad Sci U S A 95:9448–9453

    PubMed  CAS  Google Scholar 

  • Mack M, Cihak J, Simonis C, Luckow B, Proudfoot AE, Plachy J, Bruhl H, Frink M, Anders HJ, Vielhauer V, Pfirstinger J, Stangassinger M, Schlondorff D (2001) Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol 166:4697–4704

    PubMed  CAS  Google Scholar 

  • Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells TNC, Schlondorff D, Proudfoot AEI (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187:1215–1224

    PubMed  CAS  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    PubMed  CAS  Google Scholar 

  • McFadden G, Murphy PM (2000) Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr Opin Microbiol 3:371–378

    PubMed  CAS  Google Scholar 

  • McMahon EJ, Cook DN, Suzuki K, Matsushima GK (2001) Absence of macrophage-inflammatory protein-1alpha delays central nervous system demyelination in the presence of an intact blood-brain barrier. J Immunol 167:2964–2971

    PubMed  CAS  Google Scholar 

  • Mellado M, Rodriguez-Frade JM, Aragay A, del Real G, Martin AM, Vila-Coro AJ, Serrano A, Mayor F, Jr., Martinez A (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161:805–813

    PubMed  CAS  Google Scholar 

  • Mellado M, Rodriguez-Frade JM, Manes S, Martinez A (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421

    PubMed  CAS  Google Scholar 

  • Meurer R, Van Riper G, Feeney W, Cunningham P, Hora D, Jr., Springer MS, Maclntyre DE, Rosen H (1993) Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1 alpha, or human interleukin 8. J Exp Med 178:1913–1921

    PubMed  CAS  Google Scholar 

  • Mishell B.B. (1980) Preparation of Mouse Cell Suspensions. In: Mishell B.B., Shiigi S.M. (eds) Selected Methods In Cellular Immunology. W.H. Freeman and Company, New York, pp. 6–8

    Google Scholar 

  • Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2:123–128

    PubMed  CAS  Google Scholar 

  • Murphy PM (1996) Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev 7:47–64

    PubMed  CAS  Google Scholar 

  • Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    PubMed  CAS  Google Scholar 

  • Nelken NA, Coughlin SR, Gordon D, Wilcox JN (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127

    PubMed  CAS  Google Scholar 

  • Ogata H, Takeya M, Yoshimura T, Takagi K, Takahashi K (1997) The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J Pathol 182:106–114

    PubMed  CAS  Google Scholar 

  • Oppermann M, Mack M, Proudfoot AE, Olbrich H (1999) Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus. J Biol Chem 274:8875–8885

    PubMed  CAS  Google Scholar 

  • Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B, Jarnagin K, Handel TM (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273:33157–33165

    PubMed  CAS  Google Scholar 

  • Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    PubMed  CAS  Google Scholar 

  • Parry CM, Simas JP, Smith VP, Stewart CA, Minson AC, Efstathiou S, Alcami A (2000) A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191:573–578

    PubMed  CAS  Google Scholar 

  • Plater-Zyberk C, Hoogewerf AJ, Proudfoot AE, Power CA, Wells TN (1997) Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol Lett 57:117–120

    PubMed  CAS  Google Scholar 

  • Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT (2000) Active movement of T cells away from a chemokine. Nat Med 6:543–548

    PubMed  CAS  Google Scholar 

  • Proudfoot AE, Buser R, Borlat F, Alouani S, Soler D, Offord RE, Schroder JM, Power CA, Wells TN (1999) Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem 274:32478–32485

    PubMed  CAS  Google Scholar 

  • Proudfoot AEI, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TNC (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271:2599–2603

    PubMed  CAS  Google Scholar 

  • Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, Baggiolini M, Clark-Lewis I (1994) Neutrophil activation by monomeric interleukin-8. Science 264:90–92

    PubMed  CAS  Google Scholar 

  • Rampart M, Van Damme J, Zonnekeyn L, Herman AG (1989) Granulocyte chemotactic protein/interleukin-8 induces plasma leakage and neutrophil accumulation in rabbit skin. Am J Pathol 135:21–25

    PubMed  CAS  Google Scholar 

  • Rani MR, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM (1996) Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271:22878–22884

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Tani M (1998) Do chemokines mediate leukocyte recruitment in posttraumatic CNS inflammation? Trends Neurosci 21:154–159

    PubMed  CAS  Google Scholar 

  • Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR (1993) Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J Biol Chem 268:5834–5839

    PubMed  CAS  Google Scholar 

  • Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194:1541–1547

    PubMed  CAS  Google Scholar 

  • Rodrick ML, Lamster IB, Sonis ST, Pender SG, Kolodkin AB, Fitzgerald JE, Wilson RE (1982) Effects of supernatants of polymorphonuclear neutrophils recruited by different inflammatory substances on mitogen responses of lymphocytes. Inflammation 6:1–11

    PubMed  CAS  Google Scholar 

  • Sabroe I, Conroy DM, Gerard NP, Li Y, Collins PD, Post TW, Jose PJ, Williams TJ, Gerard CJ, Ponath PD (1998) Cloning and characterization of the guinea pig eosinophil eo-taxin receptor, C-C chemokine receptor-3: blockade using a monoclonal antibody in vivo. J Immunol 161:6139–6147

    PubMed  CAS  Google Scholar 

  • Sabroe I, Peck MJ, Van Keulen BJ, Jorritsma A, Simmons G, Clapham PR, Williams TJ, Pease JE (2000) A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem 275:25985–25992

    PubMed  CAS  Google Scholar 

  • Sakanashi Y, Takeya M, Yoshimura T, Feng L, Morioka T, Takahashi K (1994) Kinetics of macrophage subpopulations and expression of monocyte chemoattractant protein-1 (MCP-1) in bleomycin-induced lung injury of rats studied by a novel monoclonal antibody against rat MCP-1. J Leukoc Biol 56:741–750

    PubMed  CAS  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumer-oulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    PubMed  CAS  Google Scholar 

  • Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11:152–176

    PubMed  CAS  Google Scholar 

  • Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K (1993) Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleu-kin-8. Nature 365:654–657

    PubMed  CAS  Google Scholar 

  • Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P (2000) CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 102:98–106

    PubMed  CAS  Google Scholar 

  • Signoret N, Pelchen-Matthews A, Mack M, Proudfoot AEI, Marsh M (2000) Endocytosis and recycling of the HIV coreceptor CCR5. J Cell Biol. 151:1281–1293

    PubMed  CAS  Google Scholar 

  • Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde, MM, Schwartz TW, Buser R, Wells TNC, Proudfoot AEI (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276:276–279

    PubMed  CAS  Google Scholar 

  • Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    PubMed  CAS  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    PubMed  CAS  Google Scholar 

  • Stine JT, Chantry D, Gray P (1999) Virally encoded chemokines and chemokine receptors: genetic embezzlement of host DNA. Chem Immunol 72:161–180

    PubMed  CAS  Google Scholar 

  • Streblow DN, Orloff SL, Nelson JA (2001) Do pathogens accelerate atherosclerosis? J Nutr 131:2798S–2804S

    PubMed  CAS  Google Scholar 

  • Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520

    PubMed  CAS  Google Scholar 

  • Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 98:12718–12723

    PubMed  CAS  Google Scholar 

  • Strunk T, Bubel S, Mascher B, Schlenke P, Kirchner H, Wandinger KP (2000) Increased numbers of CCR5+ interferon-gamma- and tumor necrosis factor- alpha-secreting T lymphocytes in multiple sclerosis patients. Ann Neurol 47:269–273

    PubMed  CAS  Google Scholar 

  • Swensson O, Schubert C, Christophers E, Schroder JM (1991) Inflammatory properties of neutrophil-activating protein-1/interleukin 8 (NAP-1/IL-8) in human skin: a light-and electronmicroscopic study. J Invest Dermatol 96:682–689

    PubMed  CAS  Google Scholar 

  • Szabo C, Scott GS, Virag L, Egnaczyk G, Salzman AL, Shanley TP, Hasko G (1998) Suppression of macrophage inflammatory protein (MIP)-lalpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 125:379–387

    PubMed  CAS  Google Scholar 

  • Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsu-shima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    PubMed  CAS  Google Scholar 

  • Takami S, Minami M, Nagata I, Namura S, Satoh M (2001) Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1430–1435

    PubMed  CAS  Google Scholar 

  • Takano K, A1 Mokdad M, Shibata F, Tsuchiya H, Nakagawa H (1999) Rat macrophage inflammatory protein-1alpha, a CC chemokine, acts as a neutrophil chemoattractant in vitro and in vivo. Inflammation 23:411–424

    PubMed  CAS  Google Scholar 

  • Tran EH, Kuziel WA, Owens T (2000) Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur J Immunol 30:1410–1415

    PubMed  CAS  Google Scholar 

  • Trebst C, Ransohoff RM (2001) Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. Arch Neurol 58:1975–1980

    PubMed  CAS  Google Scholar 

  • Van Damme J, Proost P, Lenaerts JP, Opdenakker G (1992) Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 176:59–65

    PubMed  Google Scholar 

  • Villiger PM, Terkeltaub R, Lotz M (1992) Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage. Induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid. J Clin Invest 90:488–496

    PubMed  CAS  Google Scholar 

  • Volin MV, Shah MR, Tokuhira M, Haines GK, Woods JM, Koch AE (1998) RANTES expression and contribution to monocyte Chemotaxis in arthritis. Clin Immunol Immunopathol 89:44–53

    PubMed  CAS  Google Scholar 

  • Wagner L, Yang OO, Garcia-Zepeda EA, Ge Y, Kalams SA, Walker BD, Pasternack MS, Luster AD (1998) b-Chemokines are released from HIV-1-specific cytolytic granules complexed to potreoglycans. Nature 391:908–911

    PubMed  CAS  Google Scholar 

  • Weber KS, Grone HJ, Rocken M, Klier C, Gu S, Wank R, Proudfoot AE, Nelson PJ, Weber C (2001) Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol 31:2458–2466

    PubMed  CAS  Google Scholar 

  • Weber KS, von Hundelshausen P, Clark-Lewis I, Weber PC, Weber C (1999) Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur J Immunol 29:700–712

    PubMed  CAS  Google Scholar 

  • Weiss JM, Downie SA, Lyman WD, Berman JW (1998) Astrocyte-derived monocyte-che-moattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol 161:6896–6903

    PubMed  CAS  Google Scholar 

  • Wilkinson PC (1998) Assays of leukocyte locomotion and Chemotaxis. J Immunol Methods 216:139–153

    PubMed  CAS  Google Scholar 

  • Wong M, Fish EN (1998) RANTES and MIP-1alpha activate stats in T cells. J Biol Chem 273:309–314

    PubMed  CAS  Google Scholar 

  • Yokochi S, Hashimoto H, Ishiwata Y, Shimokawa H, Haino M, Terashima Y, Matsushima K (2001) An anti-inflammatory drug, propagermanium, may target GPI-anchored proteins associated with an MCP-1 receptor, CCR2. J Interferon Cytokine Res 21:389–398

    PubMed  CAS  Google Scholar 

  • Zhang Y, Rollins BJ (1995) A dominant negative inhibitor indicates that monocyte che-moattractant protein 1 functions as a dimer. Mol Cell Biol 15:4851–4855

    PubMed  CAS  Google Scholar 

  • Zhou N, Luo Z, Luo J, Liu D, Hall JW, Pomerantz RJ, Huang Z (2001) Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem 276:42826–42833

    PubMed  CAS  Google Scholar 

  • Zlatopolskiy A, Laurence J (2001) ‘Reverse gear’ cellular movement mediated by chemo-kines. Immunol Cell Biol 79:340–344

    PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    PubMed  CAS  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998a) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, Z., Frauenschuh, A., Proudfoot, A.E.I. (2003). Targeting the Chemokine System. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics