Skip to main content

Relationships Between Reactive Oxygen Species and Reactive Nitrogen Oxide Species Produced by Macrophages

  • Chapter
The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

  • 443 Accesses

Abstract

The armature of macrophages includes systems that catalytically produce a variety of chemical agents that help form the core of the innate inflammatory response. Compounds derived from oxygen are collectively known as reactive oxygen species (ROS), while those generated from nitrogen and oxygen are termed reactive nitrogen oxide species (RNOS). Both ROS and RNOS participate in cytotoxic mechanisms designed to kill pathogens. These systems require tight regulatory control to deter vascular abnormalities and host cell damage. ROS and RNOS also function to modulate a broad array of signaling pathways that shape adaptive immune responses. Effective pharmacological intervention of bystander injury elicited by ROS and RNOS will require an understanding of the specific interrelationships between these agents and how they factor into the various phases of inflammatory responses, which may be unique to different leukocyte subpopulations within each organ system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO (1992) Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res 70:264–271

    PubMed  CAS  Google Scholar 

  • Abu-Soud HM, Hazen SL (2000) Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem 275:5425–5430

    PubMed  CAS  Google Scholar 

  • Adak S, Wang Q, Stuehr DJ (2000) Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem 275:33554–33561

    PubMed  CAS  Google Scholar 

  • Albina JE, Mastrofrancesco B (1993) Modulation of glucose metabolism in macrophages by products of nitric oxide synthase. Am J Physiol 264:C 1594–1599

    Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    PubMed  CAS  Google Scholar 

  • Amin AR, Attur M, Vyas P, Leszczynska-Piziak J, Levartovsky D, Rediske J, Clancy RM, Vora KA, Abramson SB (1995–96) Expression of nitric oxide synthase in human peripheral blood mononuclear cells and neutrophils. J Inflamm 47:190–205

    PubMed  CAS  Google Scholar 

  • Annane D, Sanquer S, Sebille V, Faye A, Djuranovic D, Raphael JC, Gajdos P, Bellissant E (2000) Compartmentalised inducible nitric-oxide synthase activity in septic shock. Lancet 355:1143–1148

    PubMed  CAS  Google Scholar 

  • Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    PubMed  CAS  Google Scholar 

  • Babior BM. NADPH oxidase: an update. (1999) Blood 93:1464–76

    PubMed  CAS  Google Scholar 

  • Baehner RL, Johnston RB Jr (1972) Monocyte function in children with neutropenia and chronic infections. Blood 40:31–41

    PubMed  CAS  Google Scholar 

  • Baehner RL, Murrmann SK, Davis J, Johnston RB Jr (1975) The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J Clin Invest 56:571–576

    PubMed  CAS  Google Scholar 

  • Baek KJ, Thiel BA, Lucas S, Stuehr DJ (1993) Macrophage nitric oxide synthase subunits. Purification, characterization and role of prosthetic groups and substrate regulating their association into dimeric enzyme. J Biol Chem 268:21120–21129

    PubMed  CAS  Google Scholar 

  • Bartberger MD, Fukuto JM, Houk KN (2001) On the acidity and reactivity of HNO in aqueous solution and biological systems. Proc Natl Acad Sci USA 98:2194–2198

    PubMed  CAS  Google Scholar 

  • Bastian NR, Hibbs JB (1994) Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol 6:131–139

    PubMed  CAS  Google Scholar 

  • Benov L, Chang LY, Day B, Fridovich I (1995) Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization. Arch Biochem Biophys 319:508–511

    PubMed  CAS  Google Scholar 

  • Berton G, Gordon S (1983) Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology 49:705–715

    PubMed  CAS  Google Scholar 

  • Berton G, Yan SR, Fumagalli L, Lowell CA (1996) Neutrophil activation by adhesion: mechanisms and pathophysiological implications. Int J Clin Lab Res 26:160–177

    PubMed  CAS  Google Scholar 

  • Biggar WD and Sturgess JM (1976) Peroxidase activity of alveolar macrophages. Lab Invest 34:31–42

    PubMed  CAS  Google Scholar 

  • Bodel PT, Nichols BA, Bainton DF (1977) Appearance of peroxidase reactivity within the rough endoplasmic reticulum of blood monocytes after surface adherence. J Exp Med 145:264–274

    PubMed  CAS  Google Scholar 

  • Bogdan C (2000) The function of nitric oxide in the immune system. Handbook Exp Pharm, Mayer B, Ed., 143:443–492

    CAS  Google Scholar 

  • Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE (1992) L-Arginine transport is increased in macrophages generating nitric oxide. Biochem J 284:15–18

    PubMed  CAS  Google Scholar 

  • Boveris A, Poderoso JJ (2000) Regulation of oxygen metabolism by nitric oxide. In Nitric Oxide. Biology and Pathobiology. Ignarro LJ, Ed., Academic Press, San Diego, 355–368

    Google Scholar 

  • Bradley PP, Christensen RD, Rothstein G. (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622

    PubMed  CAS  Google Scholar 

  • Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, Chitano P,Hoidal JR (2002) NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 282:L782–795

    PubMed  CAS  Google Scholar 

  • Bromberg Y, Shani E, Joseph G, Gorzalczany Y, Sperling O, Pick E (1994) The GDP-bound form of the small G protein Racl p2l is a potent activator of the superoxide-forming NADPH oxidase of macrophages. J Biol Chem 269:7055–7058

    PubMed  CAS  Google Scholar 

  • Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232:188–191

    PubMed  CAS  Google Scholar 

  • Brown GC (1997) Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: implications for inflammatory, neurodegenerative and ischaemic pathologies, Mol Cell Biochem 174:189–192

    PubMed  CAS  Google Scholar 

  • Brown GC (2000) Nitric oxide as a competitive inhibitor of oxygen consumption in the mitochondrial respiratory chain. Acta Physiol Scand 168:667–674

    PubMed  CAS  Google Scholar 

  • Brüne B, von Knethen A, Sandau KB (2001) Transcription factors p53 and HIF-1alpha as targets of nitric oxide. Cell Signal 13:525–533

    PubMed  Google Scholar 

  • Brunelli L, Yermilov V, Beckman JS (2001) Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med 30:709–714

    PubMed  CAS  Google Scholar 

  • Chance B (1947) An intermediate compound in the catalase-hydrogen peroxide reaction.Acta Chem Scand 1: 236–267

    CAS  Google Scholar 

  • Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP, Billiar TR,Hutchinson NI, Mudgett JS (1994) Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 269:6765–6772

    PubMed  CAS  Google Scholar 

  • Chen B, Deen WM (2001) Analysis of the effects of cell spacing and liquid depth on nitric oxide and its oxidation products in cell cultures. Chem Res Toxicol 14:135–147

    PubMed  CAS  Google Scholar 

  • Chen Y, Panda K, Stuehr DJ (2002) Control of nitric oxide synthase dimer assembly by a heme-NO-dependent mechanism. Biochemistry 41:4618–4625

    PubMed  CAS  Google Scholar 

  • Chenais B, Yapo A, Lepoivre M and Tenu J-P (1993) N-hydroxy-L-arginine, a reactional intermediate in nitric oxide biosynthesis, induces cytostasis in human and murine tumor cells. Biochem Biophys Res Commun 196:558–1565

    Google Scholar 

  • Chisolm GM 3rd, Hazen SL, Fox PL, Cathcart MK (1999) The oxidation of lipoproteins by monocytes-macrophages. Biochemical and biological mechanisms. J Biol Chem 274:25959–25962

    PubMed  CAS  Google Scholar 

  • Clancy RM, Amin AR, Abramson SB (1998) The role of nitric oxide in inflammation and immunity. Arthritis Rheum 41:1141–1151

    PubMed  CAS  Google Scholar 

  • Clancy RM, Leszczynska-Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90:1116–1121

    PubMed  CAS  Google Scholar 

  • Clancy RM, Levartovsky D, Leszczynska-Piziak J, Yegudin J, Abramson SB (1994) Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci USA 91:3680–3684

    PubMed  CAS  Google Scholar 

  • Clark RA (1999) Activation of the neutrophil respiratory burst oxidase. J Infect Dis 179:S309–317

    PubMed  CAS  Google Scholar 

  • Clifford DP, Repine JE (1982) Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem 49:143–149

    PubMed  CAS  Google Scholar 

  • Closs EI, Scheld J-S, Sharafi M, Förstermann U (2000) Substrate supply for NO synthase in macrophages and endothelial cells: The cationic amino acid transporters (CATs). Mol Pharm 57:68–74

    CAS  Google Scholar 

  • Colton CA, Gbadegesin M, Wink DA, Miranda KM, Espey MG, Vicini S (2001) Nitroxyl anion regulation of the NMDA receptor. J Neurochem 78:1126–1134

    PubMed  CAS  Google Scholar 

  • Cross AR, Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237:111–116

    PubMed  CAS  Google Scholar 

  • Crow JP, Beckman JS (1995) Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharmacol 34:17–43

    PubMed  CAS  Google Scholar 

  • Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    PubMed  CAS  Google Scholar 

  • De Groote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, Libby SJ, Vazquez-Torres A, Xu Y, Fang FC (1997) Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001

    PubMed  Google Scholar 

  • DeLeo FR, Allen LA, Apicella M, Nauseef WM (1999) NADPH oxidase activation and assembly during phagocytosis. J. Immunol. 163:6732–6740

    Google Scholar 

  • Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333:49–58

    PubMed  CAS  Google Scholar 

  • Denicola A, Souza JM, Gatti RM, Augusto O, Radi R (1995) Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radic Biol Med 19:11–19

    PubMed  CAS  Google Scholar 

  • Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS (2002) Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med 195:59–70

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra, MJM, Castrillo A, Martin-Sanz P, and Bosca L (1999) Negative regulation by phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. J Immunol 162:6184–6190

    PubMed  CAS  Google Scholar 

  • Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, Ferrara P, Gordon S (1994) Inter-leukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 24:1441–1445

    PubMed  CAS  Google Scholar 

  • Doyle MP, Herman JG, Dykstra RL (1985) Autocatalytic oxidation of hemoglobin induced by nitrite: activation and chemical inhibition. J Free Radic Biol Med 1:145–153

    PubMed  CAS  Google Scholar 

  • Drapier JC (1997) Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods 11:319–329

    PubMed  CAS  Google Scholar 

  • Espey MG, Miranda KM, Feelisch M, Fukuto J, Grisham MB, Vitek M, Wink DA (2000a) Mechanisms of cell death governed by the balance between nitrosative and oxidative stress. Annal NY Acad Sci 288:209–221

    Google Scholar 

  • Espey MG, Miranda KM, Pluta RM, Wink DA (2000b) Nitrosative capacity of macrophages is dependent on nitric-oxide synthase induction signals. J Biol Chem 275:11341–11347

    PubMed  CAS  Google Scholar 

  • Espey MG, Miranda KM, Thomas DD, Wink DA (2001) Distinction between nitrosating mechanisms within human cells and aqueous solution. J Biol Chem 276:3085–3091

    Google Scholar 

  • Espey MG, Miranda KM, Thomas DD, Wink DA. (2002a) Ingress and reactive chemistry of nitroxyl-derived species within human cells. Free Rad Biol Med 33:827–834

    PubMed  CAS  Google Scholar 

  • Espey MG, Miranda KM, Thomas DD, Xavier S, Citrin D, Vitek MP, Wink DA (2002b) A chemical perspective on the interplay between NO, reactive oxygen species and reacnitrogen oxide species. Annal NY Acad Sci 962:195–206

    CAS  Google Scholar 

  • Espey MG, Thomas DD, Miranda KM, Wink DA. (2002c) Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide Proc Natl Acad Sci USA 99:11127–11132

    PubMed  CAS  Google Scholar 

  • Espey MG, Xavier S, Thomas DD, Miranda KM, Wink DA. (2OO2d) Direct real-time evaluation of nitration with green fluorescent protein in solution and within human cells reveals the impact of nitrogen dioxide vs. peroxynitrite mechanisms. Proc Natl Acad Sci USA 99:3481–3486

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ (1967) A peroxidase-mediated antimicrobial system in leukocytes. J Clin Invest 46:1078

    Google Scholar 

  • Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93:480–489

    PubMed  CAS  Google Scholar 

  • Edwards SW, Lloyd D (1988) The relationship between superoxide generation, cyto-chrome b and oxygen in activated neutrophils. FEBS Lett 227:39–42

    PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    PubMed  CAS  Google Scholar 

  • Eissa NT, Yuan JW, Haggerty CM, Choo EK, Palmer CD, Moss J (1998) Cloning and characterization of human inducible nitric oxide synthase splice variants: a domain, encoded by exons 8 and 9, is critical for dimerization. Proc Natl Acad Sci USA 95:7625–7630

    PubMed  CAS  Google Scholar 

  • Farias-Eisner R, Chaudhuri G, Aeberhard E, Fukuto JM (1996) The chemistry and tumor-icidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem 271:6144–6151

    PubMed  CAS  Google Scholar 

  • Fenton, HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899–910

    CAS  Google Scholar 

  • Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3

    PubMed  CAS  Google Scholar 

  • Forman HJ, Torres M (2001a) Signaling by the respiratory burst in macrophages. IUBMB Life 51:365–71

    PubMed  CAS  Google Scholar 

  • Forman HJ, Torres M (2001b) Redox signaling in macrophages. Mol Aspects Med. 22:189–216

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    PubMed  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (02-.), superoxide dismutases, and related matters. J Biol Chem. 272:18515–7

    PubMed  CAS  Google Scholar 

  • Fujii H, Ichimori K, Hoshiai K, Nakazawa H (1997) Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272:32773–32778

    PubMed  CAS  Google Scholar 

  • Fukuto JM (1995) Chemistry of nitric oxide: biologically relevant aspects. Adv Pharmacol 34:1–15

    PubMed  CAS  Google Scholar 

  • Gamaley IA, Kirpichnikova KM, Klyubin IV (1994) Activation of murine macrophages by hydrogen peroxide. Cell Signal 6:949–957

    PubMed  CAS  Google Scholar 

  • Ganster RW, Geller DA (2000) Molecular regulation of inducible nitric oxide synthase. In Nitric Oxide, Ignarro LJ, Ed., Academic Press, San Diego, 129–156

    Google Scholar 

  • Garcia RC, Segal AW (1988) Phosphorylation of the subunits of cytochrome b-245 upon triggering of the respiratory burst of human neutrophils and macrophages. Biochem J 252:901–904

    PubMed  CAS  Google Scholar 

  • Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    PubMed  CAS  Google Scholar 

  • Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Silvio MD, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR (1993) Molecular cloning and expression of in-ducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90: 3491–3495

    PubMed  CAS  Google Scholar 

  • Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, Mobley HL, Wilson KT (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA 98:13844–13849

    PubMed  CAS  Google Scholar 

  • Granger DL, Hibbs JB Jr, Broadnax LM (1991) Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NG-mono-methyl-L-arginine. J Immunol 146:1294–1302

    PubMed  CAS  Google Scholar 

  • Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr. (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol 268:142–51

    PubMed  CAS  Google Scholar 

  • Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leu-kocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675

    PubMed  CAS  Google Scholar 

  • Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    PubMed  CAS  Google Scholar 

  • Griendling, KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase Role in cardiovascular biology and disease. Circ Res 86:494–501

    PubMed  CAS  Google Scholar 

  • Grisham MB, Johnson GG, Lancaster JR Jr (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    PubMed  CAS  Google Scholar 

  • Guo FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci USA 92:7809–7813

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Royal Soc London, Series A, 147:332–351

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition-metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280:1–8

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine, Oxford University Press

    Google Scholar 

  • Hampton M, Vissers M, Keenan J, Winterbourn C (2002) Oxidant-mediated phosphati-dylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. J Leukoc Biol 71:775–781

    PubMed  CAS  Google Scholar 

  • Hazen SL (2000) Oxidation and atherosclerosis. Free Radic Biol Med 28:1683–1684

    PubMed  CAS  Google Scholar 

  • Hazen SL, Hsu FF, Duffin K, Heinecke JW (1996) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem 271:23080–23088

    PubMed  CAS  Google Scholar 

  • Hazen SL, Zhang R, Shen Z, Wu W, Podrez EA, MacPherson JC, Schmitt D, Mitra SN, Mukhopadhyay C, Chen Y, Cohen PA, Hoff HF, Abu-Soud HM (1999) Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for mono-cyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res. 85:950–958

    PubMed  CAS  Google Scholar 

  • Heinecke JW, Li W, Daehnke HL 3rd, Goldstein, JA (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages J Biol Chem 268:4069–4077

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z (1984) Iron depletion: possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem Biophys Res Commun 123:716–723

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z (1987a) Macrophage cytotoxicity: role for L-arginine deiminase activity and imino nitrogen oxidation to nitrite. Science 235:473–476

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Vavrin Z, Taintor RR (1987b) L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138:550–565

    PubMed  CAS  Google Scholar 

  • Hickman-Davis JM, O’Reilly P, Davis IC, Peti-Peterdi J, Davis G, Young KR, Devlin RB, Matalon S (2002) Killing of Klebsiella pneumoniae by human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 282:L944–56

    PubMed  CAS  Google Scholar 

  • Hobbs AJ, Fukuto JM, Ignarro LJ (1994) Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 91:10992–10996

    PubMed  CAS  Google Scholar 

  • Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radical Res Com-mun 18:195–199

    CAS  Google Scholar 

  • Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272

    PubMed  CAS  Google Scholar 

  • Hume DA, Gordon S, Thornalley PJ, Bannister JV (1983) The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate. Biochim Biophys Acta 763:245–250

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE (1993) Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci USA 90:8103–8107

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Beckman JS (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298:446–451

    PubMed  CAS  Google Scholar 

  • Iyengar R, Stuehr DJ, Marietta MA. (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84:6369–6373

    PubMed  CAS  Google Scholar 

  • Jourd’heuil D, Miranda KM, Kim SM, Espey MG, Vodovotz Y, Laroux S, Mai CT, Miles AM, Grisham MB, Wink DA. (1999) The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch Biochem Biophys 365:92–100

    PubMed  Google Scholar 

  • Kettle AJ, Winterbourn CC (1997) Myeloperoxidase: A key regulator of neutrophil oxi-dant production. Redox Rep 3:3–15

    CAS  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    PubMed  CAS  Google Scholar 

  • Koppenol WH (1985) The reaction of ferrous EDTA with hydrogen peroxide: evidence against hydroxyl radical formation. J Free Radic Biol Med 1:281–5

    PubMed  CAS  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    PubMed  CAS  Google Scholar 

  • Kosaka H, Wishnok JS, Miwa M, Leaf CD, Tannenbaum SR (1989) Nitrosation by stimulated macrophages. Inhibitors, enhancers and substrates Carcinogenesis 10:563–566

    CAS  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    PubMed  CAS  Google Scholar 

  • Lee, J.R., and G.A. Koretzky (1998) Production of reactive oxygen intermediates following CD4O ligation correlates with c-Jun N-terminal kinase activation and IL-6 secretion in murine B lymphocytes. Eur J Immunol 28:41884197

    Google Scholar 

  • Lee C, Miura K, Liu X, Zweier JL (2000) Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. J Biol Chem 275:38965–38972

    PubMed  CAS  Google Scholar 

  • Lefkowitz DL, Lefkowitz SS (2001) Macrophage-neutrophil interaction: a paradigm for chronic inflammation revisited. Immunol Cell Biol 79:502–506

    PubMed  CAS  Google Scholar 

  • Lefkowitz DL, Mills K, Morgan D, Lefkowitz SS (1992) Macrophage activation and immu-nomodulation by myeloperoxidase. Proc Soc Exp Biol Med 199:204–210

    PubMed  CAS  Google Scholar 

  • Lefkowitz DL, Roberts E, Grattendick K, Schwab C, Stuart R, Lincoln J, Allen RC, Moguilevsky N, Bollen A, Lefkowitz SS (2000) The endothelium and cytokine secretion: the role of peroxidases as immunoregulators. Cell Immunol 202:23–30

    PubMed  CAS  Google Scholar 

  • Leung KP, Goren MB. (1989) Uptake and utilization of human polymorphonuclear leukocyte granule myeloperoxidase by mouse peritoneal macrophages. Cell Tissue Res 257:653–666

    PubMed  CAS  Google Scholar 

  • Lewis RS, Tamir S, Tannenbaum SR, Deen WM (1995) Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J Biol Chem 270:29350–29355

    PubMed  CAS  Google Scholar 

  • Linares E, Giorgio S, Mortara RA, Santos CX, Yamada AT, Augusto O (2001) Role of per-oxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radic Biol Med 30:1234–1242

    PubMed  CAS  Google Scholar 

  • Lincoln JA, Lefkowitz DL, Cain T, Castro A, Mills KC, Lefkowitz SS, Moguilevsky N, Bollen A. (1995) Exogenous myeloperoxidase enhances bacterial phagocytosis and intra-cellular killing by macrophages. Infect Immun 63:3042–3047

    PubMed  CAS  Google Scholar 

  • Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr (1998) Accelerated reaction of nitric oxide with 02 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95:2175–2179

    PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 89:6711–6715

    PubMed  CAS  Google Scholar 

  • Lymar SV, Hurst JK (1995) Role of compartmentation in promoting toxicity of leukocyte-generated strong oxidants. Chem Res Toxicol 8:833–840

    PubMed  CAS  Google Scholar 

  • Lymar SV, Jiang Q, Hurst JK (1996) Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35:7855–7861

    PubMed  CAS  Google Scholar 

  • Lyons CR, Orloff GJ, Cunningham JM. (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267:6370–6374

    PubMed  CAS  Google Scholar 

  • Ma XL, Gao F, Liu G-L, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M (1999) Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci USA 96:14617–14622

    PubMed  CAS  Google Scholar 

  • MacMicking, J., Xie, Q.W., Nathan, C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol 15:323–350

    PubMed  CAS  Google Scholar 

  • Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79:1137–1146

    PubMed  CAS  Google Scholar 

  • Marietta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Google Scholar 

  • Mastroeni, P., Vazquez-Torres, A., Fang, EC, Xu, Y., Khan, S., Hormaeche, C.E., Dougan, G. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–247

    PubMed  CAS  Google Scholar 

  • Metchnikoff E (1905) In Immunity to infectious diseases. Cambridge University Press, London

    Google Scholar 

  • Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, Grisham MB (1996) Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 271:40–47

    PubMed  CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    PubMed  CAS  Google Scholar 

  • Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, Jourd’heuil D, Grisham MB, Feelisch M, Fukuto JM, Wink DA (2002) Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem 276:1720–1727

    Google Scholar 

  • Miranda KM, Yamada K-I, Espey MG, Thomas DD, DeGraff W, Mitchell JB, Krishna MC, Colton CA, Wink DA (2002) Further evidence for distinct reactive intermediates from nitroxyl and peroxynitrite: Effects of buffer composition on the chemistry of Angeli’s salt and synthetic peroxynitrite. Arch Biochem Biophys, in press

    Google Scholar 

  • Miwa M, Stuehr DJ, Marietta MA, Wishnok JS, Tannenbaum SR (1987) Nitrosation of amines by stimulated macrophages. Carcinogenesis 8:955–958

    PubMed  CAS  Google Scholar 

  • Morris SM Jr (1999) Arginine synthesis, metabolism and transport: Regulators of nitric oxide synthases. In Cellular and Molecular Biology of Nitric Oxide, Laskin JD, Laskin DL Eds., Dekker, New York, 57–86

    Google Scholar 

  • Morris SM Jr, Kepka-Lenhart D, Chen LC (1998) Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol 275:E74O–747

    Google Scholar 

  • Nakagawara A, Nathan CF, Cohn ZA (1981) Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 68:1243–1252

    PubMed  CAS  Google Scholar 

  • Nanda A, Curnutte JT, Grinstein S (1994) Activation of H+ conductance in neutrophils requires assembly of components of the respiratory burst oxidase but not its redox function. J Clin Invest. 93:1770–1775

    PubMed  CAS  Google Scholar 

  • Nathan C, Srimal S, Faber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD (1989) Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins aand CD1/CD18 integrins. J Cell Biol 109:1341–1349

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    PubMed  CAS  Google Scholar 

  • Nauseef WM, Malech HL (1986) Analysis of the peptide subunits of human neutrophil myeloperoxidase. Blood 67:1504–1507

    PubMed  CAS  Google Scholar 

  • Nauseef WM, Volpp BD, McCormick S, Leidal KG, Clark RA (1991) Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 266:5911–5917

    PubMed  CAS  Google Scholar 

  • Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K (1997) Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65:3644–3647

    PubMed  CAS  Google Scholar 

  • Pacelli R, Wink DA, Cook JA, Krishna MC, DeGraff W, Friedman N, Tsokos M, Samuni A, Mitchell JB (1995) Nitric oxide potentiates hydrogen peroxide-induced killing of Es-cherichia coli. J Exp Med 182:1469–1479

    PubMed  CAS  Google Scholar 

  • Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto, JM, Feelisch M, Wink DA, Kass DA (2001) Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci USA 98:10463–10468

    PubMed  CAS  Google Scholar 

  • Paul-Eugene N, Mossalayi D, Sarfati M, Yamaoka K, Aubry JP, Bonnefoy JY, Dugas B, Kolb JP (1993) Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell Immunol Jul;163(2):314–8

    Google Scholar 

  • Pfeiffer S, Lass A, Schmidt K, Mayer B. (2001) Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J Biol Chem 276:34051–34058

    PubMed  CAS  Google Scholar 

  • Pickl WF, Majdic O, Kohl P, Stockl J, Riedl E, Scheinecker C, Bello-Fernandez C, Knapp W (1996) Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J Immunol 157:3850–3859

    PubMed  CAS  Google Scholar 

  • Prada-Delgado A, Carrasco-Marin E, Bokoch GM, Alvarez-Dominguez C (2001) Interfer-on-gamma listericidal action is mediated by novel Rab5a functions at the phagosomal environment. J Biol Chem 276:19059–19065

    PubMed  CAS  Google Scholar 

  • Podrez EA, Abu-Soud HM, Hazen SL. (2000) Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28:1717–1725

    PubMed  CAS  Google Scholar 

  • Poole RK, Hughes MN (2000) New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783

    PubMed  CAS  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–722

    PubMed  CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    PubMed  CAS  Google Scholar 

  • Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    PubMed  CAS  Google Scholar 

  • Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297

    PubMed  CAS  Google Scholar 

  • Reiling N, Ulmer AJ, Duchrow M, Ernst M, Flad HD, Hauschildt S (1994) Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol 24:1941–1944

    PubMed  CAS  Google Scholar 

  • Reiss M, Roos D (1978) Differences in oxygen metabolism of phagocytosing monocytes and neutrophils. J Clin Invest 61:480–488

    PubMed  CAS  Google Scholar 

  • Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med. 31:53–59

    PubMed  CAS  Google Scholar 

  • Robinson JM; Badwey JA (1994) Production of active oxygen species by phagocytic leukocytes. Immunol Ser 60:159–178

    PubMed  CAS  Google Scholar 

  • Robinson JM, Badwey JA. (1995) The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 103:163–180

    PubMed  CAS  Google Scholar 

  • Rodkey FL (1976) A mechanism for the conversion of oxyhemoglobin to methemoglobin by nitrite. Clin Chem. 22:1986–1990

    PubMed  CAS  Google Scholar 

  • Rodrigues MR, Rodriguez D, Russo M, Campa A. (2002) Macrophage activation includes high intracellular myeloperoxidase activity. Biochem Biophys Res Commun. 292:869–873

    PubMed  CAS  Google Scholar 

  • Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE, Ramos CL, Cohen MS, Britigan BE (1995) Free radicals and phagocytic cells FASEB J 9:200–209

    PubMed  CAS  Google Scholar 

  • Root RK, Cohen MS (1981) The microbicidal mechanisms of human neutrophils and eo-sinophils. Rev Infect Dis 3:565–598

    PubMed  CAS  Google Scholar 

  • Roubaud V, Sankarapandi S, Kuppusamy P, Tordo P, Zweier JL (1998) Quantitative measurement of superoxide generation and oxygen consumption from leukocytes using electron paramagnetic resonance spectroscopy. Anal Biochem 257:210–217

    PubMed  CAS  Google Scholar 

  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA. (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075

    PubMed  CAS  Google Scholar 

  • Salerno JC (1996) Nitric oxide complexes of metalloproteins. In Niric Oxide. Principles and actions. Lancaster JR Jr., Ed., Academic Press, San Diego, 83–110

    Google Scholar 

  • Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, Weissman BA, Lane P, Liu Q, Gross SS (1997) An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 272:29769–29777

    PubMed  CAS  Google Scholar 

  • Sandau KB, Fandrey J, Brüne B (2001) Accumulation of HIF-1 alpha under the influence of nitric oxide. Blood 97:1009–1015

    PubMed  CAS  Google Scholar 

  • Sampson JB, Ye Y, Rosen H, Beckman JS (1995) Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys 356:207–213

    Google Scholar 

  • Saran M, Bors W (1994) Signalling by O2 and NO: how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? Chem-Biol Interact 90:35–45

    PubMed  CAS  Google Scholar 

  • Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83:865–875

    PubMed  CAS  Google Scholar 

  • Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. 1. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M No NO from NO synthase. (1996) Proc Natl Acad Sci USA 93:14492–14497

    PubMed  CAS  Google Scholar 

  • Sharara AI, Perkins DJ, Misukonis MA, Chan SU, Dominitz JA, Weinberg JB (1997) Inter-feron (IFN)-alpha activation of human blood mononuclear cells in vitro and in vivo for nitric oxide synthase (NOS) type 2 mRNA and protein expression: possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-alpha in vivo. J Exp Med 186:1495–1502

    PubMed  CAS  Google Scholar 

  • Shaw AW, Vosper AJ (1977) Solubility of nitric oxide in aqueous and nonaqueous solvents. J Chem Soc Faraday Trans 18:1239–1244

    Google Scholar 

  • Shepherd VL, Hoidal JR (1990) Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol 2:335–340

    PubMed  CAS  Google Scholar 

  • Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett. 65:547–551

    Google Scholar 

  • Snell JC, Chernyshev O, Gilbert DL, Colton CA (1997) Polyribonucleotides induce nitric oxide production by human monocyte-derived macrophages. J Leukoc Biol 62:369–373

    PubMed  CAS  Google Scholar 

  • Steiner, P, Efferen L, Durkin HG, Joseph GK, and Nowakowski M. Nitric oxide production by human alveolar macrophages in pulmonary disease. (1996) Ann NY Acad Sci 797:246–249

    PubMed  CAS  Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Ghosh S (2000) Enzymology of nitric oxide. Handbook Exp Pharm, Mayer B., Ed., 143:33–70

    CAS  Google Scholar 

  • Stuehr DJ, Marietta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7737–7742

    Google Scholar 

  • Subczynski WK, Hyde JS (1983) Concentration of oxygen in lipid bilayers using a spinlabel method. Biophys J 41:283–286

    PubMed  CAS  Google Scholar 

  • Tauber AI, Borregaard N, Simons E, Wright (1983) Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. J. Med (Baltimore) 62:286–309

    CAS  Google Scholar 

  • Taylor BS, Geller DA (2000) Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock 13:413–424

    PubMed  CAS  Google Scholar 

  • Thomas DD, Espey MG, Vitek MP, Miranda KM, Wink DA (2002) Protein nitration by nitrite and peroxide is mediated by heme and free iron through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci USA 99:12691–12696

    PubMed  CAS  Google Scholar 

  • Tsuruta T, Tani K, Shimane M, Ozawa K, Takahashi S, Tsuchimoto D, Takahashi K, Nagata S, Sato N, Asano S. (1996) Effects of myeloid cell growth factors on alkaline phospha-tase, myeloperoxidase, defensin and granulocyte colony-stimulating factor receptor mRNA expression in haemopoietic cells of normal individuals and myeloid disorders. Br J Haematol 92:9–22

    PubMed  CAS  Google Scholar 

  • van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ (2000) Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem 275:11638–11644

    PubMed  Google Scholar 

  • van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272:7617–7625

    PubMed  Google Scholar 

  • Vazquez-Torres A, Fang FC (2001) Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect 3:1313–1320

    PubMed  CAS  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236

    PubMed  CAS  Google Scholar 

  • Venema RC, Ju H, Zou R, Ryan JW, Venema VJ (1997) Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide syn-thase isoforms. J Biol Chem 272:1276–1282

    PubMed  CAS  Google Scholar 

  • Vitek MP, Snell J, Dawson H, Colton CA (1997) Modulation of nitric oxide production in human macrophages by apolipoprotein-E and amyloid-beta peptide. Biochem Bio-phys Res Commun 240:391–394

    CAS  Google Scholar 

  • Vodovotz Y (1997) Control of nitric oxide production by transforming growth factor-betal: mechanistic insights and potential relevance to human disease. Nitric Oxide 1:3–17

    PubMed  CAS  Google Scholar 

  • Vodovotz Y, Russell D, Xie QW, Bogdan C, Nathan C (1995) Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol 154:2914–2925

    PubMed  CAS  Google Scholar 

  • Webb JL, Harvey MW, Holden DW, Evans TJ (2001) Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 69:6391–400

    PubMed  CAS  Google Scholar 

  • Weinberg JB (1998) Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med 4:557–591

    PubMed  CAS  Google Scholar 

  • Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160–166

    PubMed  Google Scholar 

  • Wilhelm J, Frydrychova M, Hezinova A, Vizek M (1997) Production of hydrogen peroxide by peritoneal macrophages from rats exposed to subacute and chronic hypoxia. Phy-siol Res 46:35–39

    CAS  Google Scholar 

  • Williams DLH (1988) In Nitrosation, Cambridge Press, Oxford, United Kingdom

    Google Scholar 

  • Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC (1993) Reactions of the bioreg-ulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6:23–27

    PubMed  CAS  Google Scholar 

  • Wink DA, Cook JA, Kim SY, Vodovotz Y, Pacelli R, Krishna MC, Russo A, Mitchell JB, Jourd’heuil D, Miles AM, Grisham MB. (1997) Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress. J Biol Chem 272:11147–11151

    PubMed  CAS  Google Scholar 

  • Wink DA, Cook JA, Krishna MC, Hanbauer I, DeGraff W, Gamson J, Mitchell JB. (1995) Nitric oxide protects against alkyl peroxide-mediated cytotoxicity: further insights into the role nitric oxide plays in oxidative stress. Arch Biochem Biophys 319:402–407

    PubMed  CAS  Google Scholar 

  • Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, Grisham MB (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213

    PubMed  CAS  Google Scholar 

  • Wink DA, Miranda KM, Espey MG, Mitchell JB, Grisham MB, Fukuto J, Feelisch M (2000) The chemical biology of NO. Balancing NO with oxidative and nitrosative stress. Handbook of Exp Pharm, Mayer B, Ed., Springer Verlag, Berlin, 143:7–32

    CAS  Google Scholar 

  • Wink DA, Wink CB, Nims RW, Ford PC (1994) Oxidizing intermediates generated in the Fenton reagent: Kinetic arguments against the intermediacy of the hydroxyl radical. Environ Health Perspec 102:11–15

    CAS  Google Scholar 

  • Winterbourn CC, Vissers MC, Kettle AJ (2000) Myeloperoxidase. Curr Opin Hematol 7:53–58

    PubMed  CAS  Google Scholar 

  • Wung BS, Cheng JJ, Shyue SK, Wang DL (2001) NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain.Arterioscler Thromb Vasc Biol 21:1941–1947

    PubMed  CAS  Google Scholar 

  • Wymann MP, Kernen P, Deranleau DA, Baggiolini M (1989) Respiratory burst oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. J Biol Chem 264:15829–15834

    PubMed  CAS  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    PubMed  CAS  Google Scholar 

  • Ye YZ, Strong M, Huang ZQ, Beckman JS (1996) Antibodies that recognize nitrotyrosine. Methods Enzymol 269:201–209

    PubMed  CAS  Google Scholar 

  • Zamora R, Billiar TR (2000) Nitric oxide: A true inflammatory mediator. Handbook Exp Pharm, Mayer B, Ed., 143:493–524

    CAS  Google Scholar 

  • Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6:347–373

    PubMed  CAS  Google Scholar 

  • Zeng C, Morrison AR (2001) Disruption of the actin cytoskeleton regulates cytokine-in-duced iNOS expression. Am J Physiol Cell Physiol 281:C932–40

    PubMed  CAS  Google Scholar 

  • Zhou M, Brown EJ (1993) Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J Exp Med. 178:1165–1174

    PubMed  CAS  Google Scholar 

  • Zhu L, Gunn C, Beckman JS (1992) Bactericidal activity of peroxynitrite. Arch Biochem Biophys 298:452–457

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Espey, M.G. (2003). Relationships Between Reactive Oxygen Species and Reactive Nitrogen Oxide Species Produced by Macrophages. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics