Skip to main content

Dietary Fatty Acids and Macrophages

  • Chapter
The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

  • 449 Accesses

Abstract

Fatty acids constitute key components of cell membranes. The fatty acid composition of cell membranes influences membrane fluidity. Membrane phospholipids are substrates for the generation of intracellular and extracellular signalling molecules. The supply of fatty acids to monocytes and macrophages influences their fatty acid composition. Thus, dietary fatty acid composition influences that of monocyte and macrophage membranes. This can have functional consequences. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid is the principal substrate for generation of eicosanoids via cyclooxygenase and li-poxygenase enzymes. Increased availability of n-3 PUFAs (found in oily fish and fish oil) can affect chemotaxis, phagocytosis, respiratory burst, eicosanoid production, cytokine production and other monocyte/macrophage functions. Although some of the effects of n-3 PUFAs may be brought about by modulation of the amount and types of eicosanoids made, it appears that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms, including actions upon intracellular signalling pathways and transcription factor activity. The functional effects of n-3 PUFAs are generally termed as “anti-inflammatory” and are considered beneficial to health. The effects of dietary fatty acids on monocyte/macrophage function may also be relevant to atherosclerosis, which is now recognised to include an inflammatory component. Fatty acids could potentially affect the degree of oxidation of low-density lipoprotein (LDL), its uptake by vascular cells, aspects of foam cell formation and inflammatory activity within atherosclerotic lesions. These effects might account for the reported protective effects of n-3 PUFAs towards cardiovascular mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AA:

Arachidonic acid

COX:

Cyclooxygenase

DGLA:

Dihomo-γ-linolenic acid

DHA :

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

GLA:

γ-Linolenic acid

IFN:

Interferon

IL:

Interleukin

LOX:

Lipoxygenase

LPS:

Lipopolysaccharide

LT:

Leukotriene

MUFA:

Monounsaturated fatty acid

PG:

Prostaglandin

PUFA:

Polyunsaturated fatty acid

TNF:

Tumour necrosis factor

References

  • Abbey M, Belling GB, Noakes M, Hirata F, Nestel PJ (1993) Oxidation of low density lipoproteins: intraindividual variability and the effect of dietary linoleate supplementation, Am J Clin Nutr 57:391–398

    PubMed  CAS  Google Scholar 

  • Baldie G, Kaimakamis D, Rotondo D (1993) Fatty acid modulation of cytokine release from human monocytic cells, Biochim Biophys Acta 1179:125–133

    Article  PubMed  CAS  Google Scholar 

  • Baumann KH, Hessel F, Larass I, Muller T, Angerer P, Kiefl R, von Schacky C (1999) Dietary ω-3, ω-6, and ω-9 unsaturated fatty acids and growth factor and cytokine gene expression in unstimulated and stimulated monocytes, Arterioscler Thromb Vasc Biol 19:59–66

    Article  PubMed  CAS  Google Scholar 

  • Berry EM, Eisenberg S, Friedlander M, Harats D, Kaufmann NA, Norman Y, Stein Y (1992) Effects of diets rich in MUFA on plasma lipoproteins- the Jerusalem Nutrition Study, Am J Clin Nutr 56:394–403

    PubMed  CAS  Google Scholar 

  • Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis, Free Rad Biol Med 20:707–727

    Article  PubMed  CAS  Google Scholar 

  • Blok WL, Deslypere J-P, Demacker PNM, van der Ven-Jongekrijg J, Hectors MPC, van der Meer JMW, Katan MB (1997) Pro- and anti-inflammatory cytokines in healthy volunteers fed various doses offish oil for 1 year, Eur J Clin Invest 27:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • British Nutrition Foundation (1992) Unsaturated Fatty Acids: Nutritional and Physiological Significance, Task Force Report, Chapman and Hall, London

    Google Scholar 

  • British Nutrition Foundation (1999) Briefing Paper: N-3 Fatty Acids and Health, British Nutrition Foundation, London

    Google Scholar 

  • Burr ML, Gilbert JF, Holliday RM, Elwood PC, Fehily AM, Rogers S, Sweetman PM, Deadman NM (1989) Effects of changes in fat, fish and fibre intake on death and myocardial reinfarction: diet and reinfarction trial (DART), Lancet ii:757–761

    Google Scholar 

  • Caggiula AW, Mustad VA (1997) Effects of dietary fat and fatty acids on coronary artery disease risk and total and lipoprotein cholesterol concentrations: epidemiologic studies, Am J Clin Nutr 65:1597–1610

    Google Scholar 

  • Calder PC (1998) N-3 fatty acids and mononuclear phagocyte function, In: Kremer JM (ed) Medicinal Fatty Acids. Birkhauser, Basel, pp 1–27

    Chapter  Google Scholar 

  • Calder PC (2001a) N-3 polyunsaturated fatty acids, inflammation and immunity: pouring oil on troubled waters or another fishy tale? Nutr Res 21:309–341

    Article  CAS  Google Scholar 

  • Calder PC (2001b) Polyunsaturated fatty acids, inflammation and immunity, Lipids 36:1007–1024

    Article  PubMed  CAS  Google Scholar 

  • Calder PC (2002) Dietary modification of inflammation with lipids, Proc Nutr Soc 61:345–358

    Article  PubMed  CAS  Google Scholar 

  • Calder PC, Bond JA, Harvey DJ, Gordon S, Newsholme EA (1990) Uptake of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis, Biochem J 269:807–814

    PubMed  CAS  Google Scholar 

  • Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ (1996) The effect on human tumor necrosis factor α and interleukin 1ß production of diets enriched in n-3 fatty acids from vegetable oil or fish oil, Am J Clin Nutr 63:116–122

    PubMed  CAS  Google Scholar 

  • Chao FF, Blanchette-Mackie EJ, Chen YJ, Dickens BF, Berlin E, Amende LM, Skarlatos SI, Gamble W, Resau JH, Mergner WT (1990) Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions, Am J Pathol 136:169–179

    PubMed  CAS  Google Scholar 

  • Chapkin RS, Coble KJ (1991) Utilization of gammalinolenic acid by mouse peritoneal macrophages, Biochim Biophys Acta 1085:365–370

    Article  PubMed  CAS  Google Scholar 

  • Chapkin RS, Hubbard NE, Erickson KL (1990) 5-Series peptido-leukotriene synthesis in mouse peritoneal macrophages: modulation by dietary n-3 fatty acids, Biochem Biophys Res Commun 171:764–769

    Article  PubMed  CAS  Google Scholar 

  • Chapkin RS, Miller CC, Somers SD, Erickson KL (1988a) Utilization of dihomo-γ-linolenic acid (8,11,14-eicosatrienoic acid) by murine peritoneal macrophages, Biochim Biophys Acta 959:322–331

    Article  PubMed  CAS  Google Scholar 

  • Chapkin RS, Somers SD, Erickson KL (1988b) Inability of murine peritoneal macrophages to convert linoleic acid into arachidonic acid, J Immunol 140:2350–2355

    PubMed  CAS  Google Scholar 

  • Chapkin RS, Somers SD, Erickson KL (1988c) Dietary manipulation of macrophage phos-pholipid classes: selective increase of dihomogammalinolenic acid, Lipids 23:766–770

    Article  PubMed  CAS  Google Scholar 

  • Chu AJ, Walton MA, Prasad JK, Seto A (1999) Blockade by polyunsaturated n-3 fatty acids of endotoxin-induced monocytic tissue factor activation is mediated by the depressed receptor expression in THP-1 cells, J Surg Res 87:217–224

    Article  PubMed  CAS  Google Scholar 

  • Curtis CL, Hughes CE, Flannery CR, Little CB, Harwood JL, Caterson B (2000) n-3 Fatty acids specifically modulate catabolic factors involved in articular cartilage degradation, J Biol Chem 275:721–724

    Article  PubMed  CAS  Google Scholar 

  • Eicher SD, McVey DS (1995) Dietary modulation of Kupffer cell and splenocyte function during a Salmonella typhimurium challenge in mice, J Leuk Biol 58:32–39

    CAS  Google Scholar 

  • Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JMW, Cannon, JG, Rogers TS, Klempner MS, Weber PC, Schaeffer EJ, Wolff SM, Dinarello CA (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells, N Eng J Med 320:265–271

    Article  CAS  Google Scholar 

  • Felton CV, Crook D, Davies MJ, Oliver MF (1997) Relation of plaque lipid composition and morphology to the stability of human aortic plaques, Arterioscler Thromb Vasc Biol 17:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Finstad HS, Drevon CA, Kulseth MA, Synstad AV, Knudsen E, Kolset SO (1998) Cell proliferation, apoptosis and accumulation of lipid droplets in U937-l cells incubated with eicosapentaenoic acid, Biochem J 336:451–459

    PubMed  CAS  Google Scholar 

  • Fisher M, Levine PH, Weiner BH, Johnson MH, Doyle EM, Ellis PA, Hoogasian JJ (1990) Dietary n-3 fatty acid supplementation reduces Superoxide production and chemilu-minescence in a monocyte-enriched preparation of leukocytes, Am J Clin Nutr 51:804–808

    PubMed  CAS  Google Scholar 

  • Frankel EN, Parks EJ, Xu R, Schneeman BO, Davies PA, German JB (1994) Effect of n-3 fatty acid rich fish oil supplements on the oxidation of low density lipoproteins, Lipids 29:233–236

    Article  PubMed  CAS  Google Scholar 

  • Gibney MJ, Hunter B (1993): The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers, Eur J Clin Nutr 47:255–259

    PubMed  CAS  Google Scholar 

  • GISSI Prevenzione (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial, Lancet 354:447–455

    Article  Google Scholar 

  • Griffin BA (1999) Lipoprotein atherogenicity: an overview of current mechanisms, Proc Nutr Soc 58:163–169

    Article  PubMed  CAS  Google Scholar 

  • Guyton JR, Kemp KF (1992) Early extracellular and cellular lipid deposits in aorta of cholesterol-fed rabbits, Am J Pathol 141:925–936

    PubMed  CAS  Google Scholar 

  • Halvorsen DA, Hansen J-B, Grimsgaard S, Bonaa KH, Kierulf P, Nordoy A (1997) The effect of highly purified eicosapentaenoic and docosahexaenoic acids on monocyte phagocytosis in man, Lipids 32:935–942

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Myers D, Jessup W, Cochrane F, Byrne R, Whitty G, Moss S (1999) Oxidized LDL can induce macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 and GM-CSF, Arterioscler Thromb Vasc Biol 19:98–105

    Article  PubMed  CAS  Google Scholar 

  • Han KH, Chang MK, Boullier A, Green SR, Li A, Glass CK, Quehenberger O (2000) Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxi-some proliferator-activated receptor-γ, J Clin Invest 106:793–802

    Article  PubMed  CAS  Google Scholar 

  • Hourton D, Delerive P, Stankova J, Staels B, Chapman MJ, Ninio E (2001) Oxidized low-density lipoprotein and peroxisome proliferator-activated receptor a down-regulate platelet-activating-factor receptor expression in human macrophages, Biochem J 354:225–232

    Article  PubMed  CAS  Google Scholar 

  • Hubbard NE, Somers SD, Erickson KL (1991) Effect of dietary fish oil on development and selected functions of murine inflammatory macrophages, J Leuk Biol 49:592–598

    CAS  Google Scholar 

  • Keys A (1970) The Seven Countries Study, Circulation 41:1–211

    Article  Google Scholar 

  • Kruth HS (2001) Macrophage foam cells and atherosclerosis, Front Biosci 6:429–455

    Article  Google Scholar 

  • Lee TH, Hoover RL, Williams JD, Sperling RI, Ravalese J, Spur BW, Robinson DR, Corey EJ, Lewis RA, Austen KF (1985) Effects of dietary enrichment with eicosapentaenoic acid and docosahexaenoic acid on in vitro neutrophil and monocyte leukotriene generation and neutrophil function, N Engl J Med 312:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Louheranta AM, Porkkala-Sarataho EK, Nyyssonen MK, Salonen RM, Salonen JT (1996) Linoleic acid intake and susceptibility of very low density and low density lipopro-teins to oxidation in men, Am J Clin Nutr 63:698–703

    PubMed  CAS  Google Scholar 

  • Magrum LJ, Johnston PV (1983) Modulation of prostaglandin synthesis in rat peritoneal macrophages with ω-3 fatty acids, Lipids 18:514–521

    Article  PubMed  CAS  Google Scholar 

  • Mahoney EM, Scott WA, Landsberger FR, Hamill AL, Cohn ZA (1980) Influence of fatty acyl substitution on the composition and function of macrophage membranes, J Biol Chem 255:4910–4917

    PubMed  CAS  Google Scholar 

  • Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A, Dinarello C, Gorbach SL (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women, J Nutr 121:547–555

    PubMed  CAS  Google Scholar 

  • Miles EA, Calder PC (1998) Modulation of immune function by dietary fatty acids, Proc Nutr Soc 57:277–292

    Article  PubMed  CAS  Google Scholar 

  • Miles EA, Wallace FA, Calder PC (2000) Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages, Atherosclerosis 152:43–50

    Article  PubMed  CAS  Google Scholar 

  • Multiple Risk Factor Intervention Trial Research Group (1982) Multiple risk factor intervention trial, JAMA 248:1465–1477

    Article  Google Scholar 

  • Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ, Cell 93:229–240

    Article  PubMed  CAS  Google Scholar 

  • Nenseter MS, Rustan AC, Lend-Katz S, Soyland E, Maelandsmo G, Phillips MC, Drevon CA (1992) Effect of dietary supplementation with n-3 polyunsaturated fatty acids on physical properties and metabolism of low desnity lipoproteins in humans, Arte-Thromb Vasc Biol 12:369–379

    Article  CAS  Google Scholar 

  • Parthasarathy S, Khoo JC, Miller E, Narnett J, Wiztum JL (1990) Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis, Proc Natl Acad Sci USA 87:3894–3898

    Article  PubMed  CAS  Google Scholar 

  • Pietsch A, Weber C, Goretzki M, Weber PC, Lorenz RL (1995) N-3 but not n-6 fatty acids reduce the expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells, Cell Biochem Func 13:211–216

    Article  CAS  Google Scholar 

  • Reaven P, Parthasarathy S, Grasse BJ, Miller E, Steinberg D, Wiztum JL (1993) Effects of oleate rich and linoleate rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildy hypercholesterolaemic subjects, J Clin Invest 91:668–676

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EB, Varming K, Moller JM, Bulow Pederson I, Madsen P, Dyerberg J (1996) No effect of a very low dose of n-3 fatty acids on monocyte function in healthy humans, Scand J Clin Invest 56:87–92

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EB, Varming K, Pederson JO, Lervang HH, Grunnet N, Jersild C, Dyerberg J (1992) Long term supplementation with n-3 fatty acids. II. Effect on neutrophil and monocyte chemotaxis, Scand J Clin Lab Invest 52:229–236

    Article  PubMed  CAS  Google Scholar 

  • Singh RB, Niaz MA, Sharma JP, Kumar R, Rastogi V, Moshiri M (1997) Randomised double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the Indian experiment of infarct survival, Cardiovasc Drugs Ther 11:485–491

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction, Nature Rev Mol Cell Biol 1:31–40

    Article  CAS  Google Scholar 

  • Siow RCM, Richards JP, Pedley KC, Leake DS, Mann GE (1999) Vitamin C protects human vascular smooth muscle cells against apoptosis induced by moderately oxidized LDL containing high levels of lipid hydroperoxides, Arterioscler Thromb Vasc Biol 19:2387–2394

    Article  PubMed  CAS  Google Scholar 

  • Smith EB, Slater RS (1972) The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. 1. The lipids in the isolated fractions, Atherosclerosis 15:37–56

    Article  PubMed  CAS  Google Scholar 

  • Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR (1993) Dietary ω-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils, J Clin Invest 91:651–660

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Wiztum JL (1989) Beyond cholesterol; modifications of low-density lipoprotein that increases its atherogenicity, N Engl J Med 320:915–924

    Article  PubMed  CAS  Google Scholar 

  • Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturat- ed fatty acid composition in relation to membrane fluidity and function, Biochim Biophys Acta 779:89–137

    Article  PubMed  CAS  Google Scholar 

  • Suzukawa M, Abbey M, Howe PR, Nestel PJ (1995) Effects of fish oil fatty acids on low density lipoprotein size, oxidisability and uptake by macrophages, J Lipid Res 36:473–484

    PubMed  CAS  Google Scholar 

  • Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, Newsholme EA, Calder PC (2001) Influence of dietary supplementation with long chain n-3 or n-6 polyunsatu- rated fatty acids on blood inflammatory cell populations and functions and on plas- ma soluble adhesion molecules in healthy adults, Lipids 36:1183–1193

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL, Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  • Turek JJ, Schoenlein IA, Clark LK, van Alstine WG (1994) Dietary polyunsaturated fatty acids effects on immune cells of the porcine lung, J Leuk Biol 56:599–604

    CAS  Google Scholar 

  • Vines G (1989) Diet, drugs and heart disease, New Sci 44–49

    Google Scholar 

  • Whelan J, Broughton KS, Lokesh B, Kinsella JE (1991) In vivo formation of leukotriene E5 by murine peritoneal cells, Prostaglandins 41:29–42

    PubMed  CAS  Google Scholar 

  • Yaqoob P, Pala HS, Cortina-Borja M, Newsholme EA, Calder PC (2000) Encapsulated fish oil enriched in α-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions, Eur J Clin Invest 30:260–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calder, P.C., Yaqoob, P. (2003). Dietary Fatty Acids and Macrophages. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics