Skip to main content

The Macrophage as a Validated Pharmaceutical Target

  • Chapter
The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

  • 448 Accesses

Abstract

“Therapeutic validation” is a utilitarian classification of the application of the basic science base of the macrophage. Reduction to therapeutic practice represents the cutting edge of therapy, but rests upon a decades-old basic science foundation. Macrophage-targeted therapeutics have now added significant value to the lives and quality of life of patients, without undue adverse effects in multiple disease settings. These are exemplified by the impact of macrophage enzyme replacement for a lysosomal storage disease (Gaucher’s), the modulation of osteoclast-dependent bone destruction by bisphosphonates, and revolutionary impact of TNF sequestrants on both rheumatoid arthritis, as well as the delineation of new mechanisms in the understanding of Crohn’s diseases. The macrophage, as a cell, is now beginning to reach a full measure of therapeutic maturity in the application of the understanding of the particular rate-limiting roles that it plays in the maintenance of health or the induction of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balicki D, Beutler E (2002) Gene therapy of human disease. Medicine 81:69

    Article  PubMed  CAS  Google Scholar 

  • Bembi B, Ciana G, Mengel E, Terk M, Martini C, Wenstrup R (2002) Bone complications in children with Gaucher disease. Br J Radiol 75:A37

    PubMed  Google Scholar 

  • Benford HL, Frith JC, Auriola S, Monkkonen J, Rogers MJ (1999) Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmicological Classes of Bisphosphonate Drugs. Molecular Pharmacology 56:131

    PubMed  CAS  Google Scholar 

  • Berger J, Moller DE (2002) The Mechanisms of Action of PPARS. Annu Rev Medicine 53, no. 1:409

    Article  CAS  Google Scholar 

  • Bresnihan B (2002) Preventing joint damage as the best measure of biologic drug therapy. J Rheumatol 65, no. 29 Sept. Suppl.:39

    CAS  Google Scholar 

  • Coxon FP, Helfrich MH, Van’T Hof R, Sebti S, Ralston HSH A, Rogers MA (2000) Protein Geranylgeranylation is Required for Osteoclast Formation, Function, and Survival: Inhibition by Bisphosphonates and GGTI-298. Journal of Bone and Mineral Research 15, no. 8:1467

    Article  PubMed  CAS  Google Scholar 

  • Dwek R, Butters T, Platt F, Zitzmann N (2002) Targeting glycosylation as a therapeutic approach. Nature Reviews Drug Discovery 1:65

    Article  PubMed  CAS  Google Scholar 

  • Ettinger R, Daniel N (2000) TNF-deficient mice develop anti-nuclear autoantiboies. Scand JImmunol 51:S88

    Google Scholar 

  • Feldmann M, Maini RN (2001) anti-TNF-a therapy of RHEUMATOID arthritis: what have we learned? Annu Rev Immunol 19, no. 1:163

    Article  PubMed  CAS  Google Scholar 

  • Fisher JE, Rodan GA, Reszka AA (2000) In vivo Effects of Bisphosphonates on the Osteoclast Mevalonate Pathway. Endocrinology 141, no. 12:4793

    Article  PubMed  CAS  Google Scholar 

  • Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RGG, Rodan GA, Reszka AA (1999) Alendronate mechanism of action: geranylgerniol, and intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA 96:133

    Article  PubMed  CAS  Google Scholar 

  • Havell E (1989) Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 143:2894

    PubMed  CAS  Google Scholar 

  • Inoue K, Lupski JR (2002) Molecular mechanisms for genomic disorders. Annu Rev Genom Hum Genet 3, no. 1:199

    Article  CAS  Google Scholar 

  • Jenkins JK, Hardy KJ (2002) Biological modifier therapy for the treatment of rheumatoid arthritis. Am J Med Sci 323, no. 4:197

    Article  PubMed  Google Scholar 

  • Kalden JR (2002) Emerging role of anti-tumor necrosis factor therapy in rheumatic diseases. Arthritis Res 2, no. 4 Suppl:S34

    Article  Google Scholar 

  • Karpf D, Shapiro D, Seeman E, Ernsrud K, Johnston CAS, Harris S, Santora A, Hirsch L, Oppenheimer L, Thompson D (1997) Prevention of nonvertebral fractures by alen-dronate: a meta-analysis. J Am Med Assoc 277:1159

    Article  CAS  Google Scholar 

  • Keane J, Gershon S, Wise R, Mirabilie-Levens E, Kasnica J, Schwieterman W, Siegel J, Braun M (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing ag4ent. N Engl J Med 345:1098

    Article  PubMed  CAS  Google Scholar 

  • Kindler V, Sappino A, Grau G, Piguet P, Vassalli P (1989) The Inducing Role of Tumor Necrosis Factor In the Development of Bactericidal Granulomas during BCG Infection. Cell 56:731

    Article  PubMed  CAS  Google Scholar 

  • Lenercept Msg (1999) TNF neutralization in MS: Results of a randomized, placebo-controlled multicenter study. Neurology 53, no. 3:457

    Article  Google Scholar 

  • Mayordomo L, Marenco J, Gomez-Mateos J, Rejon E (2002) Pulmonary miliary tuberculosis in a pateint with anti-TNF-alpha treatment. Scand J Rheumatol 31:44

    Article  PubMed  Google Scholar 

  • Podolsky D (2002) Inflammatory bowel disease. N Engl J Med 347:417

    Article  PubMed  CAS  Google Scholar 

  • Poll L, Maas M, Terk M, Roca-Espiau M, Bembi B, Ciana G, Weinreb R (2002) Response of Gaucher bone disease to enzyne replacent therapy. Br J Radiol 75:A25

    PubMed  CAS  Google Scholar 

  • Reszka AA, Halasy-Nagy J, Masarachia PJ, Rodan GA (1999) Bisphosphonates Act Directly on the Osteoclast to Induce Caspase Cleavage of Mstl Kinase Apoptosis. The Journal of Biological Chemistry 274, no. 49:34967

    Article  PubMed  CAS  Google Scholar 

  • Sandborn WJ, Targan SR (2002) Biologic therapy of inflammatory bowel disease. Gastroenerology 122, no. 6:1592

    Article  CAS  Google Scholar 

  • Scott DL (2002) Advances in the medical management of rheumatoid arthritis. Hosp Medicine 63, no. 5:1227

    Google Scholar 

  • Sicotte NL, Voskuhl RR (2001) Onset of multiple sclerosis associated with anti-TNF therapy. Neurology 57, no. 10:1885

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapuetic target. Annu Rev Medicine 45, no. 1:491

    Article  CAS  Google Scholar 

  • Weinreb N, Charrow J, Andersson H, Kaplan P, Kolodny E, Mistry P, Pastores G, Rosen-bloom B, Scott C, Wappner R, Zimran A. (2002) Effectiveness of enzyme replacement therapy in 1028 pateinest with type I Gaucher disease after 2 to 5 years of treatment. Am J Med 113:112

    Article  PubMed  CAS  Google Scholar 

  • Weisman MH (2002) What are the risks of biologic therapy in rheumatoid arthritis? An update on safety. J Rheumatol 65, no. 29 Sept. Suppl:33

    CAS  Google Scholar 

  • Wright S, Silverstein S (1984) Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309:359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosen, H. (2003). The Macrophage as a Validated Pharmaceutical Target. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics