Skip to main content

Immersive Augmented Reality for Parkinson Disease Rehabilitation

  • Chapter
  • First Online:
Book cover Virtual, Augmented Reality and Serious Games for Healthcare 1

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 68))

Abstract

In this chapter, an immersive augmented reality system is proposed as an approach to create multiple interactive virtual environments that can be used in Parkinson Disease rehabilitation programs. The main objective of this work is to develop a wearable tangible augmented reality environment focused on providing the sense of presence required to effectively immerse patients so that they are able to perform different tasks in context-specific scenarios. By using our system, patients are able to freely navigate different virtual environments. Moreover, by segmenting and then overlaying users’ hands and objects of interest above the 3D environment, patients have the ability to naturally interact with both real-life items as well as with virtually augmented objects using nothing but their bare hands. As part of this work, Parkinson Disease patients participated in a three-week dual task assessment program in which several tasks were performed following a strict protocol. In order to assess patients’ performance, the tasks were carried out both in the real world and using the system. The findings of this work will help evaluate the viability of using augmented reality as an auxiliary tool for Parkinson Disease rehabilitation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aita, J.F.: Why patients with Parkinson’s disease fall. J. Am. Med. Assoc. (JAMA) 247(4), 515–516 (1982)

    Article  Google Scholar 

  2. Albani, G., Pignatti, R., Bertella, L., Priano, L., Semenza, C., Molinari, E., Riva, G., Mauro, A.: Common daily activities in the virtual environment: a preliminary study in Parkinsonian patients. Neurol. Sci. 23, 49–50 (2002)

    Article  Google Scholar 

  3. Andre, N.: A modular approach to the development of interactive augmented reality applications. Masters thesis, Department of Computer Science, The University of Western Ontario (2013)

    Google Scholar 

  4. Arthur, K.: Effects of field of view on task performance with head-mounted displays. In: Conference Companion on Human Factors in Computing Systems, pp. 29–30 (1996)

    Google Scholar 

  5. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  6. Baratoff, G., Blanksteen, S.: Tracking devices. Encyclopedia of Virtual Environments (1993)

    Google Scholar 

  7. Bell Boucher, D., Roberts-South, A., Ayala Garca, A., Katchabaw, M., Jog, M.: Immersive augmented reality: Investigating a new tool for parkinson disease rehabilitation. In: Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering, Nov (2013)

    Google Scholar 

  8. Billinghurst, M., Kato, H., Poupyrev, I.: Collaboration with tangible augmented reality interfaces. HCI Int. 1, 5–10 (2001)

    Google Scholar 

  9. Bisson, E., Contant, B., Sveistrup, H., Lajoie, Y.: Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol. Behav. 10(1), 16–23 (2007)

    Article  Google Scholar 

  10. Chen, J.J.: Parkinson’s disease: health-related quality of life, economic cost, and implications of early treatment. Am. J. Managed Care 16, S87 (2010)

    Google Scholar 

  11. Creagh, H.: Cave automatic virtual environment. In: Proceedings of Electrical Insulation and Electrical Manufacturing Coil Winding Technology Conference, pp. 499–504. Sept 2003

    Google Scholar 

  12. Davidsdottir, S., Wagenaar, R., Young, D., Cronin-Golomb, A.: Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s. Brain 131(11), 2882–2893 (2008)

    Article  Google Scholar 

  13. Hendrix, C., Barfield, W.: The sense of presence within auditory virtual environments. Presence Teleoperators Virtual Environ. 5(3), 290–301 (1996)

    Google Scholar 

  14. Hollman, J.H., Brey, R.H., Robb, R.A., Bang, T.J., Kaufman, K.R.: Spatiotemporal gait deviations in a virtual reality environment. Gait posture 23(4), 441–444 (2006)

    Article  Google Scholar 

  15. Huang, Y., Liu, Y., Wang, Y.: Ar-view: An augmented reality device for digital reconstruction of yuangmingyuan. In: IEEE International Symposium on Mixed and Augmented Reality-Arts, Media and Humanities, ISMAR-AMH 2009, pp. 3–7. IEEE (2009)

    Google Scholar 

  16. Huse, D.M., Schulman, K., Orsini, L., Castelli-Haley, J., Kennedy, S., Lenhart, G.: Burden of illness in Parkinson’s disease. Mov. Disord. 20(11), 1449–1454 (2005)

    Article  Google Scholar 

  17. Ishii, H., Ullmer, B.: Tangible bits: Towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM conference on Human Factors in Computing Systems. pp. 234–241 (1997)

    Google Scholar 

  18. Iwata, H.: Walking about virtual environments on an infinite floor. In: IEEE Proceedings of Virtual Reality, pp. 286–293. IEEE (1999)

    Google Scholar 

  19. Jankovic, J.: Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368 (2008)

    Google Scholar 

  20. Kaminsky, T.A., Dudgeon, B.J., Billingsley, F.F., Mitchell, P.H., Weghorst, S.J.: Virtual cues and functional mobility of people with parkinson’s disease: A single-subject pilot study. J. Rehabil. Res. Dev. 44(3), 437 (2007)

    Article  Google Scholar 

  21. Kapp, G.: The application of virtual reality for Parkinson’s disease rehabilitation. Undergraduate thesis, Department of Computer Science, The University of Western Ontario (2010)

    Google Scholar 

  22. Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of 2nd IEEE and ACM International Workshop on Augmented Reality, (IWAR’99), pp. 85–94. IEEE (1999)

    Google Scholar 

  23. Kwakkel, G., Goede, C., Wegen, E.: Impact of physical therapy for Parkinson’s disease: A critical review of the literature. Parkinsonism Relat. Disord. 13, S478–S487 (2007)

    Article  Google Scholar 

  24. Lee, B., Chun, J.: Interactive manipulation of augmented objects in marker-less ar using vision-based hand interaction. In: 2010 Seventh International Conference on Information Technology: New Generations (ITNG), pp. 398–403. IEEE (2010)

    Google Scholar 

  25. Lee, J.H., Ku, J., Cho, W., Hahn, W.Y., Kim, I.Y., Lee, S.M., Kang, Y., Kim, D.Y., Yu, T., Wiederhold, B.K., et al.: A virtual reality system for the assessment and rehabilitation of the activities of daily living. CyberPsychol. Behav. 6(4), 383–388 (2003)

    Article  Google Scholar 

  26. Merians, A.S., Jack, D., Boian, R., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality-augmented rehabilitation for patients following stroke. Phys. Ther. 82(9), 898–915 (2002)

    Google Scholar 

  27. Messier, J., Adamovich, S., Jack, D., Hening, W., Sage, J., Poizner, H.: Visuomotor learning in immersive 3d virtual reality in Parkinsons disease and in aging. Exp. Brain Res. 179(3), 457–474 (2007)

    Article  Google Scholar 

  28. Mirelman, A., Maidan, I., Herman, T., Deutsch, J.E., Giladi, N., Hausdorff, J.M.: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J. Gerontol. Ser. A: Bio. Sci. Med. Sci. 66(2), 234 (2011)

    Article  Google Scholar 

  29. O’Brien, J.A., Ward, A., Michels, S.L., Tzivelekis, S., Brandt, N.J.: Economic burden associated with parkinson disease. Drug Benefit Trends 21(6), 179–190 (2009)

    Google Scholar 

  30. Slater, M., Wilbur, S.: A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 6(6), 603–616 (1997)

    Google Scholar 

  31. Souman, J.L., Giordano, P.R., Schwaiger, M., Frissen, I., Thtimmel, T., Ulbrich, H., Luca, A.D., Btilthoff, H.H., Ernst, M.O.: Cyberwalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. (TAP) 8(4), 25 (2011)

    Google Scholar 

  32. Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: Walking in place through virtual environments. Presence 8(6), 598–617 (1999)

    Article  Google Scholar 

  33. Vujcic, V.: Virtual reality for the use of medical research. Undergraduate thesis, Department of Computer Science, The University of Western Ontario (2010)

    Google Scholar 

  34. Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a wii balance board to explore a virtual environment. ACM Trans. Appl. Percept. (TAP) 8(3), 19 (2011)

    Google Scholar 

  35. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: A presence questionnaire. Presence 7(3), 225–240 (1998)

    Article  Google Scholar 

  36. Wloka, M.M., Anderson, B.G.: Resolving occlusion in augmented reality. In: Proceedings of the 1995 symposium on Interactive 3D graphics, pp. 5–12, New York, USA (1995)

    Google Scholar 

  37. Young, D.E., Wagenaar, R.C., Lin, C.C., Chou, Y.H., Davidsdottir, S., Saltzman, E., Cronin-Golomb, A.: Visuospatial perception and navigation in Parkinsons disease. Vision. Res. 50(23), 2495–2504 (2010)

    Article  Google Scholar 

  38. Zhang, L., Abreu, B., Seale, G., Masel, B., Christiansen, C., Ottenbacher, K.: A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch. Phys. Med. Rehabil. 84(8), 1118–1124 (2003)

    Article  Google Scholar 

  39. Zhou, F., Duh, H.B.L., Billinghurst, M.: Trends in augmented reality tracking, interaction and display: A review of ten years of ismar. In: 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. ISMAR 2008, pp. 193–202. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Katchabaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garcia, A., Andre, N., Bell Boucher, D., Roberts-South, A., Jog, M., Katchabaw, M. (2014). Immersive Augmented Reality for Parkinson Disease Rehabilitation. In: Ma, M., Jain, L., Anderson, P. (eds) Virtual, Augmented Reality and Serious Games for Healthcare 1. Intelligent Systems Reference Library, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54816-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54816-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54815-4

  • Online ISBN: 978-3-642-54816-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics