Skip to main content

The Maltose ABC Transporter: Where Structure Meets Function

  • Chapter
  • First Online:
Membrane Transport Mechanism

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 17))

Abstract

ATP-binding cassette (ABC) transporters mediate active transport of a variety of substrates across biological membranes. The long studied maltose importer from Escherichia coli has provided a wealth of biochemical and genetic information, making it an attractive target for structure determination. The maltose transporter is a complex composed of a heterodimer of transmembrane subunits and a nucleotide-binding subunit homodimer that together function in concert with a periplasmic-binding protein, responsible for delivery of maltose to the transporter. The complex has now been crystallized in multiple states along the translocation pathway. Functional studies were key for stabilizing the transporter in these conformational states, validating the structures and understanding the molecular mechanism of transport. ATP hydrolysis and substrate transport are coupled via concerted conformational changes spanning the bilayer that result in alternating access of the substrate-binding site to either side of the membrane. Although the detailed dynamics of the complex remain to be revealed, we illustrate here how the interplay between biochemical, biophysical, and structural studies established the maltose transporter as one of the best characterized proteins of the ABC family. While many of these molecular insights are relevant to the entire ABC transporter family, some mechanistic features may differ between subclasses, highlighting the extraordinary diversity of ABC proteins and the need for further structure/function analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez FJ, Orelle C, Davidson AL (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132(28):9513–9515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Austermuhle MI, Hall JA, Klug CS, Davidson AL (2004) Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport. J Biol Chem 279(27):28243–28250

    CAS  PubMed  Google Scholar 

  • Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580(4):1023–1035

    CAS  PubMed  Google Scholar 

  • Bishop L, Agbayani R Jr, Ambudkar SV, Maloney PC, Ames GF (1989) Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proc Natl Acad Sci U S A 86(18):6953–6957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bluschke B, Volkmer-Engert R, Schneider E (2006) Topography of the surface of the signal-transducing protein EIIA(Glc) that interacts with the MalK subunits of the maltose ATP-binding cassette transporter (MalFGK2) of Salmonella typhimurium. J Biol Chem 281(18):12833–12840. doi:10.1074/jbc.M512646200

    PubMed  Google Scholar 

  • Bohm S, Licht A, Wuttge S, Schneider E, Bordignon E (2013) Conformational plasticity of the type I maltose ABC importer. Proc Natl Acad Sci U S A 110(14):5492–5497. doi:10.1073/pnas.1217745110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62(1):204–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borths EL, Poolman B, Hvorup RN, Locher KP, Rees DC (2005) In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44(49):16301–16309

    CAS  PubMed  Google Scholar 

  • Bouige P, Laurent D, Piloyan L, Dassa E (2002) Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. Curr Protein Pept Sci 3(5):541–559

    CAS  PubMed  Google Scholar 

  • Chen J, Sharma S, Quiocho FA, Davidson AL (2001) Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc Natl Acad Sci U S A 98(4):1525–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12(3):651–661

    CAS  PubMed  Google Scholar 

  • Chen S, Oldham ML, Davidson AL, Chen J (2013) Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499(7458):364–368

    CAS  PubMed  Google Scholar 

  • Cui J, Davidson AL (2011) ABC solute importers in bacteria. Essays Biochem 50(1):85–99

    CAS  PubMed  Google Scholar 

  • Cui J, Qasim S, Davidson AL (2010) Uncoupling substrate transport from ATP hydrolysis in the Escherichia coli maltose transporter. J Biol Chem 285(51):39986–39993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dassa E (2011) Natural history of ABC systems: not only transporters. Essays Biochem 50(1):19–42

    CAS  PubMed  Google Scholar 

  • Dassa E, Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152(3–4):211–229

    CAS  PubMed  Google Scholar 

  • Dassa E, Hofnung M (1985) Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J 4(9):2287–2293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daus ML, Landmesser H, Schlosser A, Muller P, Herrmann A, Schneider E (2006) ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter. J Biol Chem 281(7):3856–3865

    CAS  PubMed  Google Scholar 

  • Daus ML, Berendt S, Wuttge S, Schneider E (2007a) Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle. Mol Microbiol 66(5):1107–1122

    CAS  PubMed  Google Scholar 

  • Daus ML, Grote M, Muller P, Doebber M, Herrmann A, Steinhoff HJ, Dassa E, Schneider E (2007b) ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2). J Biol Chem 282(31):22387–22396

    CAS  PubMed  Google Scholar 

  • Daus ML, Grote M, Schneider E (2009) The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle. J Bacteriol 191(3):754–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson AL, Nikaido H (1990) Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli. J Biol Chem 265(8):4254–4260

    CAS  PubMed  Google Scholar 

  • Davidson AL, Nikaido H (1991) Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J Biol Chem 266(14):8946–8951

    CAS  PubMed  Google Scholar 

  • Davidson AL, Sharma S (1997) Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. J Bacteriol 179(17):5458–5464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson AL, Shuman HA, Nikaido H (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A 89(6):2360–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson AL, Laghaeian SS, Mannering DE (1996) The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis. J Biol Chem 271(9):4858–4863

    CAS  PubMed  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364, table of contents

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581(5):935–938

    CAS  PubMed  Google Scholar 

  • Dean M (2005) The genetics of ATP-binding cassette transporters. Methods Enzymol 400:409–429

    CAS  PubMed  Google Scholar 

  • Dean DA, Davidson AL, Nikaido H (1989) Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis. Proc Natl Acad Sci U S A 86(23):9134–9138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean DA, Reizer J, Nikaido H, Saier MH Jr (1990) Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J Biol Chem 265(34):21005–21010

    CAS  PubMed  Google Scholar 

  • Dietzel I, Kolb V, Boos W (1978) Pole cap formation in Escherichia coli following induction of the maltose-binding protein. Arch Microbiol 118(2):207–218

    CAS  PubMed  Google Scholar 

  • Duplay P, Bedouelle H, Fowler A, Zabin I, Saurin W, Hofnung M (1984) Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J Biol Chem 259(16):10606–10613

    CAS  PubMed  Google Scholar 

  • Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35(1):3–67

    CAS  PubMed  Google Scholar 

  • Erkens GB, Majsnerowska M, ter Beek J, Slotboom DJ (2012) Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51(22):4390–4396

    CAS  PubMed  Google Scholar 

  • Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26(4):257–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fetsch EE, Davidson AL (2002) Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 99(15):9685–9690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froshauer S, Beckwith J (1984) The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259(17):10896–10903

    CAS  PubMed  Google Scholar 

  • George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog Biophys Mol Biol 109(3):95–107

    CAS  PubMed  Google Scholar 

  • Geourjon C, Orelle C, Steinfels E, Blanchet C, Deleage G, Di Pietro A, Jault JM (2001) A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies. Trends Biochem Sci 26(9):539–544

    CAS  PubMed  Google Scholar 

  • Gilson E, Nikaido H, Hofnung M (1982) Sequence of the malK gene in E.coli K12. Nucleic Acids Res 10(22):7449–7458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould AD, Shilton BH (2010) Studies of the maltose transport system reveal a mechanism for coupling ATP hydrolysis to substrate translocation without direct recognition of substrate. J Biol Chem 285(15):11290–11296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould AD, Telmer PG, Shilton BH (2009) Stimulation of the maltose transporter ATPase by unliganded maltose binding protein. Biochemistry 48(33):8051–8061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grote M, Polyhach Y, Jeschke G, Steinhoff HJ, Schneider E, Bordignon E (2009) Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer. J Biol Chem 284(26):17521–17526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutmann DA, Ward A, Urbatsch IL, Chang G, van Veen HW (2010) Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci 35(1):36–42

    CAS  PubMed  Google Scholar 

  • Hall JA, Ganesan AK, Chen J, Nikaido H (1997) Two modes of ligand binding in maltose-binding protein of Escherichia coli. Functional significance in active transport. J Biol Chem 272(28):17615–17622

    CAS  PubMed  Google Scholar 

  • Hazelbauer GL (1975) Maltose chemoreceptor of Escherichia coli. J Bacteriol 122(1):206–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins CF (2001) ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 152(3–4):205–210

    CAS  PubMed  Google Scholar 

  • Hinz A, Tampe R (2012) ABC transporters and immunity: mechanism of self-defense. Biochemistry 51(25):4981–4989

    CAS  PubMed  Google Scholar 

  • Hohl M, Briand C, Grutter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19(4):395–402

    CAS  PubMed  Google Scholar 

  • Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446(7132):213–216

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101(7):789–800

    CAS  PubMed  Google Scholar 

  • Hunke S, Dose S, Schneider E (1995) Vanadate and bafilomycin A1 are potent inhibitors of the ATPase activity of the reconstituted bacterial ATP-binding cassette transporter for maltose (MalFGK2). Biochem Biophys Res Commun 216(2):589–594

    CAS  PubMed  Google Scholar 

  • Hunke S, Mourez M, Jehanno M, Dassa E, Schneider E (2000) ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking. J Biol Chem 275(20):15526–15534

    CAS  PubMed  Google Scholar 

  • Isenbarger TA, Carr CE, Johnson SS, Finney M, Church GM, Gilbert W, Zuber MT, Ruvkun G (2008) The most conserved genome segments for life detection on Earth and other planets. Orig Life Evol Biosph 38(6):517–533

    CAS  PubMed  Google Scholar 

  • Jacso T, Grote M, Daus ML, Schmieder P, Keller S, Schneider E, Reif B (2009) Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE. Biochemistry 48(10):2216–2225

    CAS  PubMed  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970

    CAS  PubMed  Google Scholar 

  • Jones PM, George AM (1999) Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett 179(2):187–202

    CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2012) Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 48(1):39–50

    PubMed  Google Scholar 

  • Joseph B, Jeschke G, Goetz BA, Locher KP, Bordignon E (2011) Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J Biol Chem 286(47):41008–41017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellermann O, Szmelcman S (1974) Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein. Eur J Biochem 47(1):139–149

    CAS  PubMed  Google Scholar 

  • Khare D, Oldham ML, Orelle C, Davidson AL, Chen J (2009) Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33(4):528–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korkhov VM, Mireku SA, Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490(7420):367–372

    CAS  PubMed  Google Scholar 

  • Kuhnau S, Reyes M, Sievertsen A, Shuman HA, Boos W (1991) The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J Bacteriol 173(7):2180–2186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewinson O, Lee AT, Locher KP, Rees DC (2010) A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 17(3):332–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linton KJ, Holland IB (2011) The ABC transporters of human physiology and disease, 1st edn. World Scientific, Singapore

    Google Scholar 

  • Locher KP (2009) Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364(1514):239–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296(5570):1091–1098

    CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1995) Covalent modification of human P-glycoprotein mutants containing a single cysteine in either nucleotide-binding fold abolishes drug-stimulated ATPase activity. J Biol Chem 270(39):22957–22961

    CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2003) Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. J Biol Chem 278(3):1575–1578

    CAS  PubMed  Google Scholar 

  • Lu G, Westbrooks JM, Davidson AL, Chen J (2005) ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc Natl Acad Sci U S A 102(50):17969–17974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luckey M, Nikaido H (1980) Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli. Proc Natl Acad Sci U S A 77(1):167–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magasanik B (1970) Glucose effects: inducer exclusion and repression. In: The Lactose operon, vol 1. Cold Spring Harbor Monograph Archive, pp. 189–219

    Google Scholar 

  • Mannering DE, Sharma S, Davidson AL (2001) Demonstration of conformational changes associated with activation of the maltose transport complex. J Biol Chem 276(15):12362–12368

    CAS  PubMed  Google Scholar 

  • Manson MD, Boos W, Bassford PJ Jr, Rasmussen BA (1985) Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem 260(17):9727–9733

    CAS  PubMed  Google Scholar 

  • Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ (2002) Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277(24):21111–21114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morbach S, Tebbe S, Schneider E (1993) The ATP-binding cassette (ABC) transporter for maltose/maltodextrins of Salmonella typhimurium. Characterization of the ATPase activity associated with the purified MalK subunit. J Biol Chem 268(25):18617–18621

    CAS  PubMed  Google Scholar 

  • Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16(11):3066–3077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mourez M, Jehanno M, Schneider E, Dassa E (1998) In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP. Mol Microbiol 30(2):353–363

    CAS  PubMed  Google Scholar 

  • Oldham ML, Chen J (2011a) Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332(6034):1202–1205

    CAS  PubMed  Google Scholar 

  • Oldham ML, Chen J (2011b) Snapshots of the maltose transporter during ATP hydrolysis. Proc Natl Acad Sci U S A 108(37):15152–15156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450(7169):515–521

    CAS  PubMed  Google Scholar 

  • Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18(6):726–733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oloo EO, Fung EY, Tieleman DP (2006) The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. J Biol Chem 281(38):28397–28407. doi:10.1074/jbc.M513614200

    CAS  PubMed  Google Scholar 

  • Orelle C, Dalmas O, Gros P, Di Pietro A, Jault JM (2003) The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem 278(47):47002–47008

    CAS  PubMed  Google Scholar 

  • Orelle C, Ayvaz T, Everly RM, Klug CS, Davidson AL (2008) Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci U S A 105(35):12837–12842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orelle C, Alvarez FJ, Oldham ML, Orelle A, Wiley TE, Chen J, Davidson AL (2010) Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter. Proc Natl Acad Sci U S A 107(47):20293–20298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Procko E, O'Mara ML, Bennett WF, Tieleman DP, Gaudet R (2009) The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 23(5):1287–1302

    CAS  PubMed  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10(3):218–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richet E, Davidson AL, Joly N (2012) The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate. Mol Microbiol 85(4):632–647

    CAS  PubMed  Google Scholar 

  • Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD, Eitinger T (2009) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191(1):42–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samanta S, Ayvaz T, Reyes M, Shuman HA, Chen J, Davidson AL (2003) Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex. J Biol Chem 278(37):35265–35271

    CAS  PubMed  Google Scholar 

  • Saurin W, Koster W, Dassa E (1994) Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol Microbiol 12(6):993–1004

    CAS  PubMed  Google Scholar 

  • Schirmer T, Keller TA, Wang YF, Rosenbusch JP (1995) Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science 267(5197):512–514

    CAS  PubMed  Google Scholar 

  • Sharma S, Davidson AL (2000) Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis. J Bacteriol 182(23):6570–6576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9(1):105–127

    CAS  PubMed  Google Scholar 

  • Shuman HA (1982) Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem 257(10):5455–5461

    CAS  PubMed  Google Scholar 

  • Smith CA, Rayment I (1996) X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 35(17):5404–5417

    CAS  PubMed  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10(1):139–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spurlino JC, Lu GY, Quiocho FA (1991) The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266(8):5202–5219

    CAS  PubMed  Google Scholar 

  • Stein A, Seifert M, Volkmer-Engert R, Siepelmeyer J, Jahreis K, Schneider E (2002) Functional characterization of the maltose ATP-binding-cassette transporter of Salmonella typhimurium by means of monoclonal antibodies directed against the MalK subunit. Eur J Biochem 269(16):4074–4085

    CAS  PubMed  Google Scholar 

  • Szmelcman S, Hofnung M (1975) Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol 124(1):112–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szmelcman S, Schwartz M, Silhavy TJ, Boos W (1976) Maltose transport in Escherichia coli K12. Eur J Biochem 65(1):13–19

    CAS  PubMed  Google Scholar 

  • Tombline G, Senior AE (2005) The occluded nucleotide conformation of p-glycoprotein. J Bioenerg Biomembr 37(6):497–500

    CAS  PubMed  Google Scholar 

  • Treptow NA, Shuman HA (1985) Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol 163(2):654–660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbatsch IL, Sankaran B, Weber J, Senior AE (1995) P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J Biol Chem 270(33):19383–19390

    CAS  PubMed  Google Scholar 

  • Urbatsch IL, Beaudet L, Carrier I, Gros P (1998) Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites. Biochemistry 37(13):4592–4602

    CAS  PubMed  Google Scholar 

  • van der Heide T, Poolman B (2002) ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep 3(10):938–943

    PubMed Central  PubMed  Google Scholar 

  • Vigonsky E, Ovcharenko E, Lewinson O (2013) Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. Proc Natl Acad Sci U S A 110(14):5440–5445. doi:10.1073/pnas.1213598110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T, Fu G, Pan X, Wu J, Gong X, Wang J, Shi Y (2013) Structure of a bacterial energy-coupling factor transporter. Nature. doi:10.1038/nature12045

    Google Scholar 

  • Wen PC, Tajkhorshid E (2008) Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 95(11):5100–5110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wen PC, Tajkhorshid E (2011) Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters. Biophys J 101(3):680–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J, Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature. doi:10.1038/nature12046

    Google Scholar 

  • Ye J, Osborne AR, Groll M, Rapoport TA (2004) RecA-like motor ATPases–lessons from structures. Biochim Biophys Acta 1659(1):1–18

    CAS  PubMed  Google Scholar 

  • Yuan YR, Blecker S, Martsinkevich O, Millen L, Thomas PJ, Hunt JF (2001) The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276(34):32313–32321

    CAS  PubMed  Google Scholar 

  • Zhang Y, Mannering DE, Davidson AL, Yao N, Manson MD (1996) Maltose-binding protein containing an interdomain disulfide bridge confers a dominant-negative phenotype for transport and chemotaxis. J Biol Chem 271(30):17881–17889

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Oldham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orelle, C., Oldham, M.L., Davidson, A.L. (2014). The Maltose ABC Transporter: Where Structure Meets Function. In: Krämer, R., Ziegler, C. (eds) Membrane Transport Mechanism. Springer Series in Biophysics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53839-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53839-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53838-4

  • Online ISBN: 978-3-642-53839-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics