Skip to main content

Alternating Access Within the POT Family of Oligopeptide Proton Symporters

  • Chapter
  • First Online:
  • 1550 Accesses

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 17))

Abstract

The POT family of proton-dependent oligopeptide transporters belongs to the Major Facilitator Superfamily and is widely distributed within prokaryotic and eukaryotic kingdoms. They function as proton:peptide symporters, using the inwardly directed proton electrochemical gradient to drive the uptake of di- and tripeptides into the cell. Mammals contain two members of the POT family, PepT1 and PepT2, which in addition to their physiological role in peptide import also recognise and transport several important drug families, including the β-lactam antibiotics and a growing library of peptide modified pro-drugs. A detailed molecular understanding of peptide recognition and transport within the POT family therefore has an acute medical significance that crystallographic methods are now uniquely placed to address. In the last few years the crystal structures of two prokaryotic POT family transporters have been determined, one with bound ligand. These structures represent key intermediates in the transport cycle and reveal remarkably well-conserved sequence and structural motifs that impact peptide specificity and transport rates. However, key questions remain to be answered, including the site(s) and role of protonation and peptide binding in orchestrating the structural changes that result in transport. In this chapter we discuss the insights recent crystal structures of bacterial POT family transporters have provided and examine how these questions are being addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301(5633):610–615

    Article  CAS  PubMed  Google Scholar 

  • Anderson CMH, Thwaites DT (2010) Hijacking solute carriers for proton-coupled drug transport. Physiology 25(6):364–377

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Boyd C, Bronk J, Collier I, Meredith D, Morgan K, Temple C (2000) How to make drugs orally active: a substrate template for peptide transporter PepT1. Angew Chem Int Ed Engl 39:505–508

    Article  PubMed  Google Scholar 

  • Biegel A, Knutter I, Hartrodt B, Gebauer S, Theis S, Luckner P et al (2006) The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids 31(2):137–156

    Article  CAS  PubMed  Google Scholar 

  • Bolger MB, Haworth IS, Yeung AK, Ann D, von Grafenstein H, Hamm-Alvarez S, Okamoto CT, Kim KJ, Basu SK, Wu S, Lee VH (1998) Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J Pharm Sci 87:1286–1291

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5(8):887–905

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M, Knütter I, Bosse-Doenecke E (2008) Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60(5):543–585

    Article  CAS  PubMed  Google Scholar 

  • Casagrande F, Harder D, Schenk A, Meury M, Ucurum Z, Engel A et al (2009) Projection structure of DtpD (YbgH), a prokaryotic member of the peptide transporter family. J Mol Biol 394(4):708–717

    Article  CAS  PubMed  Google Scholar 

  • Chen X-Z, Zhu T, Smith DE, Hediger MA (1999) Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. J Biol Chem 274(5):2773–2779

    Article  CAS  PubMed  Google Scholar 

  • Chen XZ, Steel A, Hediger MA (2000) Functional roles of histidine and tyrosine residues in the H(+)-peptide transporter PepT1. Biochem Biophys Res Commun 272(3):726–730

    Article  CAS  PubMed  Google Scholar 

  • Chiang C-S, Stacey G, Tsay Y-F (2004) Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279(29):30150–30157

    Article  CAS  PubMed  Google Scholar 

  • Covitz KM, Amidon GL, Sadée W (1998) Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry 37(43):15214–15221

    Article  CAS  PubMed  Google Scholar 

  • Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H et al (2010) Structure of a fucose transporter in an outward-open conformation. Nature 467(7316):734–738

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284(5):F885–F892

    CAS  PubMed  Google Scholar 

  • Daniel H, Spanier B, Kottra G, Weitz D (2006) From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology 21:93–102

    Article  CAS  PubMed  Google Scholar 

  • Döring F, Dorn D, Bachfischer U, Amasheh S, Herget M, Daniel H (1996) Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J Physiol (Lond) 497(Pt 3):773–779

    Google Scholar 

  • Ernst HA, Pham A, Hald H, Kastrup JS, Rahman M, Mirza O (2009) Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides. Biochem Biophys Res Commun 389(1):112–116

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Konings WN, Poolman B (2000) Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis. J Bacteriol 182(9):2530–2535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF et al (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368(6471):563–566

    Article  CAS  PubMed  Google Scholar 

  • Fei YJ, Liu W, Prasad PD, Kekuda R, Oblak TG, Ganapathy V et al (1997) Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry 36(2):452–460

    Article  CAS  PubMed  Google Scholar 

  • Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807(2):167–188

    Article  CAS  PubMed  Google Scholar 

  • Hauser M, Kauffman S, Naider F, Becker JM (2005) Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae. Mol Membr Biol 22(3):215–227

    Article  CAS  PubMed  Google Scholar 

  • Hirai T, Heymann JAW, Shi D, Sarker R, Maloney PC, Subramaniam S (2002) Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol 9(8):597–600

    CAS  PubMed  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301(5633):616–620

    Article  CAS  PubMed  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970

    Article  CAS  PubMed  Google Scholar 

  • Jensen JM, Ismat F, Szakonyi G, Rahman M, Mirza O (2012) Probing the putative active site of YjdL: an unusual proton-coupled oligopeptide Transporter from E. coli. PLoS ONE 7(10):e47780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knütter I, Hartrodt B, Theis S, Foltz M, Rastetter M, Daniel H et al (2004) Analysis of the transport properties of side chain modified dipeptides at the mammalian peptide transporter PEPT1. Eur J Pharm Sci 21(1):61–67

    Article  PubMed  Google Scholar 

  • Kottra G, Stamfort A, Daniel H (2002) PEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic, and neutral substrates. J Biol Chem 277(36):32683–32691

    Article  CAS  PubMed  Google Scholar 

  • Kunji E, Michel H, Neutze R, Newstead S (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29(4):335–340

    Article  PubMed  Google Scholar 

  • Law CJ, Maloney PC, Wang D-N (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16:99–119

    Article  CAS  PubMed  Google Scholar 

  • Lemieux MJ, Huang Y, Wang D-N (2004) Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res Microbiol 155(8):623–629

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL et al (1995) Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 270(12):6456–6463

    Article  CAS  PubMed  Google Scholar 

  • Luckner P, Brandsch M (2005) Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm 59(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Matthews DM (1975) Intestinal absorption of peptides. Physiol Rev 55(4):537–608

    CAS  PubMed  Google Scholar 

  • Matthews DM (1991) Protein absorption: development and present state of the subject. Wiley-Liss, New York

    Google Scholar 

  • Mchaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19(11):1549–1561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meredith D, Boyd CA (2000) Structure and function of eukaryotic peptide transporters. Cell Mol Life Sci 57(5):754–778

    Article  CAS  PubMed  Google Scholar 

  • Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS (2013) Membrane protein structure determination – The next generation. Biochim Biophys Acta 1838(1):78–87

    Article  PubMed  Google Scholar 

  • Newman MJ, Foster DL, Wilson TH, Kaback HR (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256(22):11804–11808

    CAS  PubMed  Google Scholar 

  • Newstead S (2011) Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochem Soc Trans 39(5):1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Newstead S, Drew D, Cameron AD, Postis VLG, Xia X, Fowler PW et al (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30(2):417–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholls DG, Ferguson SJ, Ferguson S (2002) Bioenergetics. Academic, London

    Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paulsen IT, Skurray RA (1994) The POT family of transport proteins. Trends Biochem Sci 19(10):404

    Article  CAS  PubMed  Google Scholar 

  • Pieri M, Gan C, Bailey P, Meredith D (2009) The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1. Int J Biochem Cell Biol 41(11):2204–2213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407(5):698–715

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7(3):255–270

    Article  CAS  PubMed  Google Scholar 

  • Smith DE, Clémençon B, Hediger MA (2013) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34(2–3):323–336

    Article  CAS  PubMed  Google Scholar 

  • Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S et al (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31(16):3411–3421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonoda Y, Newstead S, Hu N-J, Alguel Y, Nji E, Beis K et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19(1):17–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner H-Y, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16(5):825–834

    Article  CAS  PubMed  Google Scholar 

  • Steinhardt HJ, Adibi SA (1986) Kinetics and characteristics of absorption from an equimolar mixture of 12 glycyl-dipeptides in human jejunum. Gastroenterology 90(3):577–582

    CAS  PubMed  Google Scholar 

  • Terada T, Inui K-I (2012) Chapter Eight – recent advances in structural biology of peptide transporters. In: Bevensee MO (ed) Current topics in membranes. Elsevier, Amsterdam, pp 257–274

    Google Scholar 

  • Terada T, Saito H, Sawada K, Hashimoto Y, Inui K (2000) N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm Res 17(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Kulkarni AA, Davies DL, Lee VHL (2003) Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Pharm Res 20(12):1911–1916

    Article  CAS  PubMed  Google Scholar 

  • Weitz D, Harder D, Casagrande F, Fotiadis D, Obrdlik P, Kelety B et al (2007) Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1. J Biol Chem 282(5):2832–2839

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Haworth IS, Kulkarni AA, Bolger MB, Davies DL (2009) Mutagenesis and cysteine scanning of transmembrane domain 10 of the human dipeptide transporter. Pharm Res 26:2358–2366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38(3):151–159

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Smith D (2012) Significance of Peptide Transporter 1 in the intestinal permeability of Valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos 41(3):608–614

    Article  PubMed  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465(7295):188–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Terry DS, Shi L, Quick M, Weinstein H, Blanchard SC et al (2011) Substrate-modulated gating dynamics in a Na + -coupled neurotransmitter transporter homologue. Nature 474(7349):109–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Newstead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newstead, S. (2014). Alternating Access Within the POT Family of Oligopeptide Proton Symporters. In: Krämer, R., Ziegler, C. (eds) Membrane Transport Mechanism. Springer Series in Biophysics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53839-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53839-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53838-4

  • Online ISBN: 978-3-642-53839-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics