Skip to main content

The Life and Times of Lac Permease: Crystals Ain’t Everything, but They Certainly Do Help

  • Chapter
  • First Online:
Membrane Transport Mechanism

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 17))

Abstract

This chapter focuses on the lactose permease of Escherichia coli (LacY), a galactoside/H+ symporter, as this membrane transport protein is the grandparent for the major facilitator superfamily (MFS) and arguably the most intensively studied secondary transporter known at present.

LacY couples the free energy released from downhill translocation of H+ in response to an H+ electrochemical gradient to drive the stoichiometric accumulation of galactopyranosides against a concentration gradient under physiological conditions. X-ray structures of an inward-facing conformation and most recently, an almost occluded conformation with a narrow periplasmic opening have been solved, which confirm many conclusions from biochemical and biophysical studies. Although structure models are critical, they are not sufficient to explain the catalysis of transport. The clues to understanding transport mechanisms are based on the principles of enzyme kinetics. Secondary transport is a dynamic process that can be described only partially by the static snapshots provided by X-ray crystallography. However, without structural information it is virtually impossible to deduce the chemistry underlying ion-coupled transport. By combining a large body of biochemical/biophysical data derived from systematic studies of site-directed mutants in LacY, residues involved in substrate binding and H+ translocation have been identified. On the basis of the functional properties of the mutants and the X-ray structures, a working model for the symport mechanism that involves alternating access of the binding site is presented. The use of molecular biology to engineer LacY for dynamic studies combined with computational modeling has led to the postulate that the transport reaction is driven by thermodynamics, but is controlled kinetically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J et al (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301(5633):610–615

    CAS  PubMed  Google Scholar 

  • Bibi E, Kaback HR (1990) In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci USA 87(11):4325–4329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibi E, Kaback HR (1992) Functional complementation of internal deletion mutants in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 89(5):1524–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bieseler B, Prinz H, Beyreuther K (1985) Topological studies of lactose permease of Escherichia coli by protein sequence analysis. Ann N Y Acad Sci 456:309–325

    CAS  PubMed  Google Scholar 

  • Buchel DE, Gronenborn B, Muller-Hill B (1980) Sequence of the lactose permease gene. Nature 283(5747):541–545

    CAS  PubMed  Google Scholar 

  • Calamia J, Manoil C (1990) Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci USA 87(13):4937–4941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco N, Tahara SM, Patel L, Goldkorn T, Kaback HR (1982) Preparation, characterization, and properties of monoclonal antibodies against the lac carrier protein from Escherichia coli. Proc Natl Acad Sci USA 79(22):6894–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco N, Viitanen P, Herzlinger D, Kaback HR (1984) Monoclonal antibodies against the lac carrier protein from Escherichia coli. 1. Functional studies. Biochemistry 23(16):3681–3687

    CAS  PubMed  Google Scholar 

  • Carrasco N et al (1989) Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28(6):2533–2539

    CAS  PubMed  Google Scholar 

  • Chaptal V et al (2011) Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci USA 108:9361–9366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37(28):9976–9982

    CAS  PubMed  Google Scholar 

  • Cohen GN, Rickenberg HV (1955) Etude directe de la fixation d'un inducteur de la b-galactosidase par les cellules d'Escherichia coli. Compt Rendu 240:466–468

    CAS  Google Scholar 

  • Costello MJ et al (1987) Purified lac permease and cytochrome o oxidase are functional as monomers. J Biol Chem 262(35):17072–17082

    CAS  PubMed  Google Scholar 

  • Dang S et al (2010) Structure of a fucose transporter in an outward-open conformation. Nature 467(7316):734–738

    CAS  PubMed  Google Scholar 

  • Dornmair K, Corni AF, Wright JK, Jähnig F (1985) The size of the lactose permease derived from rotational diffusion measurements. EMBO J 4(13A):3633–3638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ermolova N, Guan L, Kaback HR (2003) Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100(18):10187–10192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ermolova NV, Smirnova IN, Kasho VN, Kaback HR (2005) Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli. Biochemistry 44(21):7669–7677

    CAS  PubMed  Google Scholar 

  • Foster DL, Garcia ML, Newman MJ, Patel L, Kaback HR (1982) Lactose-proton symport by purified lac carrier protein. Biochemistry 21(22):5634–5638

    CAS  PubMed  Google Scholar 

  • Foster DL, Boublik M, Kaback HR (1983) Structure of the lac carrier protein of Escherichia coli. J Biol Chem 258(1):31–34

    CAS  PubMed  Google Scholar 

  • Fox CF, Kennedy EP (1965) Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proc Natl Acad Sci USA 54:891–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco PJ, Brooker RJ (1994) Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J Biol Chem 269(10):7379–7386

    CAS  PubMed  Google Scholar 

  • Frillingos S, Gonzalez A, Kaback HR (1997) Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential off. Biochemistry 36(47):14284–14290

    CAS  PubMed  Google Scholar 

  • Frillingos S, Sahin-Toth M, Wu J, Kaback HR (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12(13):1281–1299

    CAS  PubMed  Google Scholar 

  • Gaiko O, Bazzone A, Fendler K, Kaback HR (2013) Electrophysiological characterization of uncoupled mutants of LacY. Biochemistry 52(46):8261–8266

    CAS  PubMed  Google Scholar 

  • Garcia-Celma JJ, Smirnova IN, Kaback HR, Fendler K (2009) Electrophysiological characterization of LacY. Proc Natl Acad Sci USA 106(18):7373–7378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Celma JJ, Ploch J, Smirnova I, Kaback HR, Fendler K (2010) Delineating electrogenic reactions during lactose/H + symport. Biochemistry 49(29):6115–6121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Kaback HR (2004) Binding affinity of lactose permease is not altered by the H + electrochemical gradient. Proc Natl Acad Sci USA 101(33):12148–12152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Kaback HR (2007) Site-directed alkylation of cysteine to test solvent accessibility of membrane proteins. Nat Protoc 2(8):2012–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Murphy FD, Kaback HR (2002a) Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci USA 99(6):3475–3480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Sahin-Toth M, Kaback HR (2002b) Changing the lactose permease of Escherichia coli into a galactose-specific symporter. Proc Natl Acad Sci USA 99(10):6613–6618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Hu Y, Kaback HR (2003) Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42(6):1377–1382

    CAS  PubMed  Google Scholar 

  • Guan L, Smirnova IN, Verner G, Nagamori S, Kaback HR (2006) Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci USA 103(6):1723–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Mirza O, Verner G, Iwata S, Kaback HR (2007) Structural determination of wild-type lactose permease. Proc Natl Acad Sci USA 104(39):15294–15298

    CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Kaback HR (1997) Interaction between residues Glu269 (Helix VIII) and His322 (Helix X) of the lactose permease of Escherichia coli is essential for substrate binding. Biochemistry 36:13688–13692

    CAS  PubMed  Google Scholar 

  • He MM, Voss J, Hubbell WL, Kaback HR (1995a) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325). Biochemistry 34(48):15667–15670

    CAS  PubMed  Google Scholar 

  • He MM, Voss J, Hubbell WL, Kaback HR (1995b) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry 34(48):15661–15666

    CAS  PubMed  Google Scholar 

  • Herzlinger D, Viitanen P, Carrasco N, Kaback HR (1984) Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23(16):3688–3693

    CAS  PubMed  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301(5633):616–620

    CAS  PubMed  Google Scholar 

  • Hvorup RN, Saier MH Jr (2002) Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology 148(Pt 12):3760–3762

    CAS  PubMed  Google Scholar 

  • Jenks WP (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New York, NY

    Google Scholar 

  • Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3(11):927–932

    CAS  PubMed  Google Scholar 

  • Jiang X, Nie Y, Kaback HR (2011) Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 50(10):1634–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X et al (2012) Evidence for an intermediate conformational state of LacY. Proc Natl Acad Sci USA 109(12):E698–E704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung K, Jung H, Wu J, Privé GG, Kaback HR (1993) Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry 32:12273–12278

    CAS  PubMed  Google Scholar 

  • Jung K, Jung H, Kaback HR (1994a) Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry 33(13):3980–3985

    CAS  PubMed  Google Scholar 

  • Jung H, Jung K, Kaback HR (1994b) Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. I. Site-directed mutagenesis studies. Biochemistry 33:12160–12165

    CAS  PubMed  Google Scholar 

  • Jung K, Voss J, He M, Hubbell WL, Kaback HR (1995) Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry 34(19):6272–6277

    CAS  PubMed  Google Scholar 

  • Kaback HR (1971) Bacterial membranes. In: Kaplan NP, Jakoby WB, Colowick NP (eds) Methods in enzymol, vol XXII. Elsevier, New York, pp 99–120

    Google Scholar 

  • Kaback HR (1987) Permease on parade: application of site-directed mutagenesis to ion-gradient driven active transport. Bioessays 7(6):261–265

    CAS  PubMed  Google Scholar 

  • Kaback HR, Barnes EM Jr (1971) Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J Biol Chem 246(17):5523–5531

    CAS  PubMed  Google Scholar 

  • Kaback HR, Sahin-Toth M, Weinglass AB (2001) The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2(8):610–620

    CAS  PubMed  Google Scholar 

  • Kaback HR et al (2007) Site-directed alkylation and the alternating access model for LacY. Proc Natl Acad Sci USA 104(2):491–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaback HR, Smirnova I, Kasho V, Nie Y, Zhou Y (2011) The alternating access transport mechanism in LacY. J Membr Biol 239(1–2):85–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczorowski GJ, Kaback HR (1979) Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry 18(17):3691–3697

    CAS  PubMed  Google Scholar 

  • Kaczorowski GJ, Robertson DE, Kaback HR (1979) Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delta psi, delta pH, and delta mu H+. Biochemistry 18(17):3697–3704

    CAS  PubMed  Google Scholar 

  • Kaczorowski GJ, Leblanc G, Kaback HR (1980) Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. Proc Natl Acad Sci USA 77(11):6319–6323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasho VN, Smirnova IN, Kaback HR (2006) Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. J Mol Biol 358(4):1060–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H et al (2014) Structure of sugar-bound LacY. Proc Natl Acad Sci USA 111(5):1784–1788

    Google Scholar 

  • Kwaw I, Zen KC, Hu Y, Kaback HR (2001) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helices IV and V that contain the major determinants for substrate binding. Biochemistry 40(35):10491–10499

    CAS  PubMed  Google Scholar 

  • le Coutre J, Narasimhan LR, Patel CK, Kaback HR (1997) The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc Natl Acad Sci USA 94(19):10167–10171

    PubMed  PubMed Central  Google Scholar 

  • le Coutre J, Kaback HR, Patel CK, Heginbotham L, Miller C (1998) Fourier transform infrared spectroscopy reveals a rigid alpha-helical assembly for the tetrameric Streptomyces lividans K + channel. Proc Natl Acad Sci USA 95(11):6114–6117

    PubMed  PubMed Central  Google Scholar 

  • Lemieux MJ et al (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci 12(12):2748–2756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Madej MG, Kaback HR (2010) Helix dynamics in LacY: helices II and IV. J Mol Biol 396(3):617–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loewenthal R, Sancho J, Fersht AR (1992) Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. J Mol Biol 224(3):759–770

    CAS  PubMed  Google Scholar 

  • Madej MG, Soro SN, Kaback HR (2012) Apo-intermediate in the transport cycle of lactose permease (LacY). Proc Natl Acad Sci USA 109(44):E2970–E2978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madej MG, Dang S, Yan N, Kaback HR (2013) Evolutionary mix-and-match with MFS transporters. Proc Natl Acad Sci USA 110(15):5870–5874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar DS et al (2007) Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc Natl Acad Sci USA 104(31):12640–12645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Patel L, Gennis RB, Kaback HR (1983) Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc Natl Acad Sci USA 80(16):4889–4893

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna E, Hardy D, Kaback HR (1992) Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. J Biol Chem 267(10):6471–6474

    CAS  PubMed  Google Scholar 

  • Mirza O, Guan L, Verner G, Iwata S, Kaback HR (2006) Structural evidence for induced fit and a mechanism for sugar/H(+) symport in LacY. EMBO J 25:1177–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1963) Molecule, group and electron transport through natural membranes. Biochem Soc Symp 22:142–168

    Google Scholar 

  • Mitchell P (1967) Translocations through natural membranes. Adv Enzymol Relat Areas Mol Biol 29:33–87

    CAS  PubMed  Google Scholar 

  • Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Research Ltd, Bodmin, England

    Google Scholar 

  • Müller-Hill B (1996) The lac Operon: a short history of a genetic paradigm. Walter de Gruyter, Berlin, New York

    Google Scholar 

  • Newman MJ, Wilson TH (1980) Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem 255(22):10583–10586

    CAS  PubMed  Google Scholar 

  • Newman MJ, Foster DL, Wilson TH, Kaback HR (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256(22):11804–11808

    CAS  PubMed  Google Scholar 

  • Newstead S et al (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30(2):417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Kaback HR (2010) Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane. Proc Natl Acad Sci USA 107(21):9903–9908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Ermolova N, Kaback HR (2007) Site-directed alkylation of LacY: effect of the proton electrochemical gradient. J Mol Biol 374(2):356–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Sabetfard FE, Kaback HR (2008) The Cys154→Gly mutation in LacY causes constitutive opening of the hydrophilic periplasmic pathway. J Mol Biol 379(4):695–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Zhou Y, Kaback HR (2009) Clogging the periplasmic pathway in LacY. Biochemistry 48(4):738–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padan E, Sarkar HK, Viitanen PV, Poonian MS, Kaback HR (1985) Site-specific mutagenesis of histidine residues in the lac permease of Escherichia coli. Proc Natl Acad Sci USA 82:6765–6768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340

    CAS  PubMed  Google Scholar 

  • Patzlaff JS, Moeller JA, Barry BA, Brooker RJ (1998) Fourier transform infrared analysis of purified lactose permease: a monodisperse lactose permease preparation is stably folded, alpha-helical, and highly accessible to deuterium exchange. Biochemistry 37(44):15363–15375

    CAS  PubMed  Google Scholar 

  • Pedersen BP et al (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496(7446):533–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prive GG, Kaback HR (1996) Engineering the lac permease for purification and crystallization. J Bioenerg Biomembr 28(1):29–34

    CAS  PubMed  Google Scholar 

  • Puttner IB, Kaback HR (1988) lac permease of Escherichia coli containing a single histidine residue is fully functional. Proc Natl Acad Sci USA 85(5):1467–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puttner IB, Sarkar HK, Poonian MS, Kaback HR (1986) lac permease of Escherichia coli: histidine-205 and histidine-322 play different roles in lactose/H + symport. Biochemistry 25(16):4483–4485

    CAS  PubMed  Google Scholar 

  • Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407(5):698–715

    CAS  PubMed  Google Scholar 

  • Ramos S, Kaback HR (1977a) The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry 16(5):854–859

    CAS  PubMed  Google Scholar 

  • Ramos S, Kaback HR (1977b) The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16(5):848–854

    CAS  PubMed  Google Scholar 

  • Ramos S, Schuldiner S, Kaback HR (1976) The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci USA 73(6):1892–1896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR (1980) Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19(25):5692–5702

    CAS  PubMed  Google Scholar 

  • Roepe PD, Kaback HR (1989) Site-directed mutagenesis of tyrosine residues in the lac permease of Escherichia coli. Biochemistry 28(14):6127–6132

    CAS  PubMed  Google Scholar 

  • Sahin-Toth M, Kaback HR (1993) Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry 32(38):10027–10035

    CAS  PubMed  Google Scholar 

  • Sahin-Tóth M, Kaback HR (2001) Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli. Proc Natl Acad Sci USA 98(11):6068–6073

    PubMed  PubMed Central  Google Scholar 

  • Sahin-Tóth M, Lawrence MC, Kaback HR (1994) Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci USA 91(12):5421–5425

    PubMed  PubMed Central  Google Scholar 

  • Sahin-Tóth M et al (1999) Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli. Biochemistry 38(2):813–819

    PubMed  Google Scholar 

  • Sahin-Tóth M, Karlin A, Kaback HR (2000) Unraveling the mechanism of the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 97(20):10729–10732

    PubMed  PubMed Central  Google Scholar 

  • Sayeed WM, Baenziger JE (2009) Structural characterization of the osmosensor ProP. Biochim Biophys Acta 1788(5):1108–1115

    CAS  PubMed  Google Scholar 

  • Schowen RL (1977) Isotope effects on enzymes-catalyzed reactions. University Park Press, Baltimore, MD, pp 64–99

    Google Scholar 

  • Smirnova IN, Kaback HR (2003) A mutation in the lactose permease of Escherichia coli that decreases conformational flexibility and increases protein stability. Biochemistry 42(10):3025–3031

    CAS  PubMed  Google Scholar 

  • Smirnova IN, Kasho VN, Kaback HR (2006) Direct sugar binding to lacy measured by resonance energy transfer. Biochemistry 45(51):15279–15287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I et al (2007) Sugar binding induces an outward facing conformation of LacY. Proc Natl Acad Sci USA 104:16504–16509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova IN, Kasho V, Kaback HR (2008) Protonation and sugar binding to LacY. Proc Natl Acad Sci USA 105(26):8896–8901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova IN, Kasho VN, Sugihara J, Choe JY, Kaback HR (2009a) Residues in the H + translocation site define the pKa for sugar binding to LacY. Biochemistry 48(37):8852–8860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Kaback HR (2009b) Probing of the rates of alternating access in LacY with Trp fluorescence. Proc Natl Acad Sci USA 106(51):21561–21566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Kaback HR (2011) Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding. Proc Natl Acad Sci USA 108(37):15147–15151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Vazquez-Ibar JL, Kaback HR (2012) Role of protons in sugar binding to LacY. Proc Natl Acad Sci USA 109(42):16835–16840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Kaback HR (2013) Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation. Proc Natl Acad Sci USA 110(22):8876–8881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solcan N et al (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31(16):3411–3421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorgen PL, Hu Y, Guan L, Kaback HR, Girvin ME (2002) An approach to membrane protein structure without crystals. Proc Natl Acad Sci USA 99(22):14037–14040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soskine M, Adam Y, Schuldiner S (2004) Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J Biol Chem 279(11):9951–9955

    CAS  PubMed  Google Scholar 

  • Sugihara J, Smirnova I, Kasho V, Kaback HR (2011) Sugar recognition by CscB and LacY. Biochemistry 50(51):11009–11014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara J, Sun L, Yan N, Kaback HR (2012) Dynamics of the L-fucose/H + symporter revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109(37):14847–14851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Wu J, Carrasco N, Kaback HR (1996) Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry 35(3):990–998

    CAS  PubMed  Google Scholar 

  • Sun J, Li J, Carrasco N, Kaback HR (1997) The last two cytoplasmic loops in the lactose permease of Escherichia coli comprise a discontinuous epitope for a monoclonal antibody. Biochemistry 36(1):274–280

    CAS  PubMed  Google Scholar 

  • Sun L et al (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490(7420):361–366

    CAS  PubMed  Google Scholar 

  • Teather RM, Müller-Hill B, Abrutsch U, Aichele G, Overath P (1978) Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol Gen Genet 159:239–248

    CAS  PubMed  Google Scholar 

  • Trumble WR, Viitanen PV, Sarkar HK, Poonian MS, Kaback HR (1984) Site-directed mutagenesis of cys148 in the lac carrier protein of Escherichia coli. Biochem Biophys Res Commun 119(3):860–867

    CAS  PubMed  Google Scholar 

  • Ujwal ML, Sahin-Toth M, Persson B, Kaback HR (1994) Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol 11(1):9–16

    CAS  PubMed  Google Scholar 

  • Vadyvaloo V, Smirnova IN, Kasho VN, Kaback HR (2006) Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease. J Mol Biol 358(4):1051–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Iwaarden PR, Pastore JC, Konings WN, Kaback HR (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30(40):9595–9600

    PubMed  Google Scholar 

  • Vazquez-Ibar JL, Guan L, Svrakic M, Kaback HR (2003) Exploiting luminescence spectroscopy to elucidate the interaction between sugar and a tryptophan residue in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100(22):12706–12711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Ibar JL et al (2004) Sugar Recognition by the Lactose Permease of Escherichia coli. J Biol Chem 279(47):49214–49221

    CAS  PubMed  Google Scholar 

  • Venkatesan P, Kaback HR (1998) The substrate-binding site in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 95(17):9802–9807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesan P, Kwaw I, Hu Y, Kaback HR (2000a) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII. Biochemistry 39:10641–10648

    CAS  PubMed  Google Scholar 

  • Venkatesan P, Liu Z, Hu Y, Kaback HR (2000b) Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix II. Biochemistry 39:10649–10655

    CAS  PubMed  Google Scholar 

  • Viitanen P, Garcia ML, Foster DL, Kaczorowski GJ, Kaback HR (1983) Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22(10):2531–2536

    CAS  PubMed  Google Scholar 

  • Viitanen P, Garcia ML, Kaback HR (1984) Purified reconstituted lac carrier protein from Escherichia coli is fully functional. Proc Natl Acad Sci USA 81(6):1629–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viitanen PV, Menick DR, Sarkar HK, Trumble WR, Kaback HR (1985) Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation. Biochemistry 24(26):7628–7635

    CAS  PubMed  Google Scholar 

  • Vogel H, Wright JK, Jähnig F (1985) The structure of the lactose permease derived from Raman spectroscopy and prediction methods. EMBO J 4(13A):3625–3631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinglass AB, Kaback HR (2000) The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci USA 97(16):8938–8943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinglass AB, Sondej M, Kaback HR (2002) Manipulating conformational equilibria in the lactose permease of Escherichia coli. J Mol Biol 315(4):561–571

    CAS  PubMed  Google Scholar 

  • Weinglass A, Whitelegge JP, Faull KF, Kaback HR (2004) Monitoring Conformational Rearrangements in the Substrate-binding Site of a Membrane Transport Protein by Mass Spectrometry. J Biol Chem 279(40):41858–41865

    CAS  PubMed  Google Scholar 

  • White SH (2007) Membrane protein insertion: the biology-physics nexus. J Gen Physiol 129(5):363–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolin C, Kaback HR (1999) Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis. Biochemistry 38(26):8590–8597

    CAS  PubMed  Google Scholar 

  • Wolin CD, Kaback HR (2000) Thiol cross-linking of transmembrane domains IV and V in the lactose permease of Escherichia coli. Biochemistry 39(20):6130–6135

    CAS  PubMed  Google Scholar 

  • Wu J, Kaback HR (1996) A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 93(25):14498–14502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H et al (2013) Structure and mechanism of a nitrate transporter. Cell Rep 3(3):716–723

    CAS  PubMed  Google Scholar 

  • Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718

    CAS  PubMed  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Guan L, Kaback HR (2002) Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes. J Mol Biol 315(1):53–62

    CAS  PubMed  Google Scholar 

  • Zhao M et al (1999a) Nitroxide scanning electron paramagnetic resonance of helices IV, V and the intervening loop in the lactose permease of Escherichia coli. Biochemistry 38:15970–15977

    CAS  PubMed  Google Scholar 

  • Zhao M, Zen KC, Hubbell WL, Kaback HR (1999b) Proximity between Glu126 and Arg144 in the lactose permease of Escherichia coli. Biochemistry 38(23):7407–7412

    CAS  PubMed  Google Scholar 

  • Zheng H, Wisedchaisri G, Gonen T (2013) Crystal structure of a nitrate/nitrite exchanger. Nature 497(7451):647–651

    CAS  PubMed  Google Scholar 

  • Zhou Y, Guan L, Freites JA, Kaback HR (2008) Opening and closing of the periplasmic gate in lactose permease. Proc Natl Acad Sci USA 105(10):3774–3778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Jiang X, Kaback HR (2012) Role of the irreplaceable residues in the LacY alternating access mechanism. Proc Natl Acad Sci USA 109(31):12438–12442

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants DK51131, DK069463, and GM073210, as well as National Science Foundation Grant MCB-1129551 (to H.R.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ronald Kaback .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madej, M.G., Kaback, H.R. (2014). The Life and Times of Lac Permease: Crystals Ain’t Everything, but They Certainly Do Help. In: Krämer, R., Ziegler, C. (eds) Membrane Transport Mechanism. Springer Series in Biophysics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53839-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53839-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53838-4

  • Online ISBN: 978-3-642-53839-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics