Skip to main content

Role of the Trithorax (MLL): HOX Axis in HSC Development, Function, and Leukemia

  • Chapter
  • First Online:
  • 1074 Accesses

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The discovery of mixed lineage leukemia (MLL) fusions as causal event for a very aggressive subtype of acute leukemia has spurred a large body of research investigating the importance of this protein and its fusion derivatives for normal and malignant hematopoiesis. Here, recent advances examining the chromatin-based functions of the histone methyltransferase MLL as epigenetic factor and cell cycle regulator are summarized. This is complemented by a review of the current knowledge describing the oncogenic mechanism of MLL fusion proteins that coordinately impact chromatin modification and transcriptional control. Finally, to complete the synopsis of MLL governed processes in blood cell development, this chapter ends with a short overview of the role of HOX-homeobox proteins as major MLL downstream effectors in the hematopoietic system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731. doi:10.1038/nrg3293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alharbi RA, Pettengell R, Pandha HS, Morgan R (2012) The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 27(5):1000–1008. doi:10.1038/leu.2012.356

    PubMed  Google Scholar 

  • Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM, Freund SM, Bycroft M, Warren AJ (2006) Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J 25:4503–4512. doi:10.1038/sj.emboj.7601340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson M, Fair K, Amero S, Nelson S, Harte PJ, Diaz MO (2002) A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Dev Genes Evol 212:107–113. doi:10.1007/s00427-002-0213-8

    CAS  PubMed  Google Scholar 

  • Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, Trono D, Spitz F, Duboule D (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340:1234167. doi:10.1126/science.1234167

    PubMed  Google Scholar 

  • Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45

    CAS  PubMed  Google Scholar 

  • Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–2828. doi:10.1038/emboj.2011.194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47. doi:10.1038/ng765

    CAS  PubMed  Google Scholar 

  • Ayton PM, Chen EH, Cleary ML (2004) Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24:10470–10478. doi:10.1128/MCB.24.23.10470-10478.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bach C, Mueller D, Buhl S, Garcia-Cuellar MP, Slany RK (2009) Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28:815–823. doi:10.1038/onc.2008.443

    CAS  PubMed  Google Scholar 

  • Bach C, Buhl S, Mueller D, Garcia-Cuellar MP, Maethner E, Slany RK (2010) Leukemogenic transformation by HOXA cluster genes. Blood 115:2910–2918. doi:10.1182/blood-2009-04-216606

    CAS  PubMed  Google Scholar 

  • Basecke J, Whelan JT, Griesinger F, Bertrand FE (2006) The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol 135:438–449. doi:10.1111/j.1365-2141.2006.06301.x

    PubMed  Google Scholar 

  • Berger R, Bernheim A, Sigaux F, Daniel MT, Valensi F, Flandrin G (1982) Acute monocytic leukemia chromosome studies. Leuk Res 6:17–26

    CAS  PubMed  Google Scholar 

  • Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK (2002) The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 30:958–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16:92–106. doi:10.1093/hmg/ddl444

    CAS  PubMed  Google Scholar 

  • Blobel GA, Kadauke S, Wang E, Lau AW, Zuber J, Chou MM, Vakoc CR (2009) A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol Cell 36:970–983. doi:10.1016/j.molcel.2009.12.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breitinger C, Maethner E, Garcia-Cuellar MP, Slany RK (2012) The homeodomain region controls the phenotype of HOX-induced murine leukemia. Blood 120:4018–4027. doi:10.1182/blood-2011-10-384685

    CAS  PubMed  Google Scholar 

  • Breitinger C, Maethner E, Garcia-Cuellar MP, Schambony A, Fischer KD, Schilling K, Slany RK (2013) HOX genes regulate Rac1 activity in hematopoietic cells through control of Vav2 expression. Leukemia 27:236–238. doi:10.1038/leu.2012.166

    CAS  PubMed  Google Scholar 

  • Bueno C, Montes R, Catalina P, Rodriguez R, Menendez P (2011) Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia 25:400–410. doi:10.1038/leu.2010.284

    CAS  PubMed  Google Scholar 

  • Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T, Marschalek R (2010) The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 115:3570–3579. doi:10.1182/blood-2009-06-229542

    CAS  PubMed  Google Scholar 

  • Chang CP, Brocchieri L, Shen WF, Largman C, Cleary ML (1996) Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 16:1734–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O, Kutateladze TG, Cleary ML (2010) Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 400:137–144. doi:10.1016/j.jmb.2010.05.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–472. doi:10.1038/nature09837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, Silva A, Brown EJ, Hess JL, Pear WS, Hua X (2006) The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci U S A 103:1018–1023. doi:10.1073/pnas.0510347103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Santillan DA, Koonce M, Wei W, Luo R, Thirman MJ, Zeleznik-Le NJ, Diaz MO (2008) Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res 68:6199–6207. doi:10.1158/0008-5472.CAN-07-6514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DY, Liu H, Takeda S, Tu HC, Sasagawa S, Van Tine BA, Lu D, Cheng EH, Hsieh JJ (2010) Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res 70:5358–5367. doi:10.1158/0008-5472.CAN-10-0027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DY, Lee Y, Van Tine BA, Searleman AC, Westergard TD, Liu H, Tu HC, Takeda S, Dong Y, Piwnica-Worms DR, Oh KJ, Korsmeyer SJ, Hermone A, Gussio R, Shoemaker RH, Cheng EH, Hsieh JJ (2012) A pharmacologic inhibitor of the protease Taspase1 effectively inhibits breast and brain tumor growth. Cancer Res 72:736–746. doi:10.1158/0008-5472.CAN-11-2584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung N, Chan LC, Thompson A, Cleary ML, So CW (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9:1208–1215. doi:10.1038/ncb1642

    CAS  PubMed  Google Scholar 

  • Childs CC, Hirsch-Ginsberg C, Culbert SJ, Ahearn M, Reuben J, Trujillo JM, Cork A, Walters RR, Freireich EJ, Stass SA (1988) Lineage heterogeneity in acute leukemia with the t(4;11) abnormality: implications for acute mixed lineage leukemia. Hematol Pathol 2:145–157

    CAS  PubMed  Google Scholar 

  • Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M, Shultis DD, Zeleznik-Le NJ, Bushweller JH (2010) Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17:62–68. doi:10.1038/nsmb.1714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, Austin CA (2012) Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci U S A 109:8989–8994. doi:10.1073/pnas.1204406109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65. doi:10.1016/j.ccr.2011.06.009

    CAS  PubMed  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533. doi:10.1038/nature10509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D, Dias S, Chang J, Olhava EJ, Daigle SR, Richon VM, Pollock RM, Armstrong SA (2013) Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121(13):2533–2541. doi:10.1182/blood-2012-11-465120

    CAS  PubMed  Google Scholar 

  • DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML, Shilatifard A (2000) A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 96:3887–3893

    CAS  PubMed  Google Scholar 

  • Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA (1992) A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 2:113–118. doi:10.1038/ng1092-113

    CAS  PubMed  Google Scholar 

  • Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M, Strout MP, Feng L, Nakamura T, Yu L, Rush LJ, Weinstein M, Leone G, Wu L, Ferketich A, Whitman SP, Marcucci G, Caligiuri MA (2006) Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 116:2707–2716. doi:10.1172/JCI25546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M (2006) MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer 45:754–760. doi:10.1002/gcc.20338

    CAS  PubMed  Google Scholar 

  • Eklund E (2011) The role of Hox proteins in leukemogenesis: insights into key regulatory events in hematopoiesis. Crit Rev Oncog 16:65–76

    PubMed Central  PubMed  Google Scholar 

  • Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001) MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 21:2249–2258. doi:10.1128/MCB.21.7.2249-2258.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ (2004) Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 6:437–443

    CAS  PubMed  Google Scholar 

  • Estable MC, Naghavi MH, Kato H, Xiao H, Qin J, Vahlne A, Roeder RG (2002) MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J Biomed Sci 9:234–245

    CAS  PubMed  Google Scholar 

  • Frohling S, Scholl C, Bansal D, Huntly BJ (2007) HOX gene regulation in acute myeloid leukemia: CDX marks the spot? Cell Cycle 6:2241–2245

    CAS  PubMed  Google Scholar 

  • Fuchs U, Rehkamp G, Haas OA, Slany R, Konig M, Bojesen S, Bohle RM, Damm-Welk C, Ludwig WD, Harbott J, Borkhardt A (2001) The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci U S A 98:8756–8761. doi:10.1073/pnas.121433898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK (2001) The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 20:411–419. doi:10.1038/sj.onc.1204108

    CAS  PubMed  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    CAS  PubMed  Google Scholar 

  • Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 277:43168–43174. doi:10.1074/jbc.M207660200

    CAS  PubMed  Google Scholar 

  • Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T (2012) Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8:277–284. doi:10.1038/nchembio.773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71:701–708

    CAS  PubMed  Google Scholar 

  • He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q (2010) HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 38:428–438. doi:10.1016/j.molcel.2010.04.013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983) Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306:239–242

    CAS  PubMed  Google Scholar 

  • Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26:2604–2620. doi:10.1101/gad.201327.112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A, Frampton J, Slany RK (2006) c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 108:297–304. doi:10.1182/blood-2005-12-5014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho LL, Sinha A, Verzi M, Bernt KM, Armstrong S, Shivdasani RA (2013) DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol Cell Biol 33:1735–1745. doi:10.1128/MCB.01463-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh JJ, Cheng EH, Korsmeyer SJ (2003a) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303

    CAS  PubMed  Google Scholar 

  • Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (2003b) Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 23:186–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang CH, Chen PM, Lu TC, Kung WM, Chiou TJ, Yang MH, Kao JY, Wu KJ (2010) Purified recombinant TAT-homeobox B4 expands CD34(+) umbilical cord blood and peripheral blood progenitor cells ex vivo. Tissue Eng Part C Methods 16:487–496. doi:10.1089/ten.TEC.2009.0163

    CAS  PubMed  Google Scholar 

  • Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, Merchant JL, Hua X, Lei M (2012a) The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482:542–546. doi:10.1038/nature10806

    CAS  PubMed  Google Scholar 

  • Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C, Robertson G, MacDonald J, Cezard T, Bilenky M, Thiessen N, Zhao Y, Zeng T, Hirst M, Hero A, Jones S, Hess JL (2012b) Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 119:388–398. doi:10.1182/blood-2011-03-341081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, Zhao C, Lagoo A, Gerrard G, Foroni L, Goldman J, Goh H, Kim SH, Kim DW, Chuah C, Oehler VG, Radich JP, Jordan CT, Reya T (2010) Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 466:765–768. doi:10.1038/nature09171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417. doi:10.1016/S0168-9525(03)00167-7

    CAS  PubMed  Google Scholar 

  • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190. doi:10.1371/journal.pgen.1000190

    PubMed Central  PubMed  Google Scholar 

  • Kaneko Y, Maseki N, Takasaki N, Sakurai M, Hayashi Y, Nakazawa S, Mori T, Takeda T, Shikano T et al (1986) Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood 67:484–491

    CAS  PubMed  Google Scholar 

  • Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JC, Vincent TJ, Meara JR, Murphy MF (2013) A record-based case–control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 27:3–9. doi:10.1038/leu.2012.151

    CAS  PubMed  Google Scholar 

  • Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, Bahari-Javan S, Benito-Garagorri E, Halder R, Burkhardt S, Stewart AF, Fischer A (2013) Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci 33:3452–3464. doi:10.1523/JNEUROSCI.3356-12.2013

    CAS  PubMed  Google Scholar 

  • Kim W, Kim R, Park G, Park JW, Kim JE (2012) Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 287:5588–5599. doi:10.1074/jbc.M111.328138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krauter J, Wagner K, Schafer I, Marschalek R, Meyer C, Heil G, Schaich M, Ehninger G, Niederwieser D, Krahl R, Buchner T, Sauerland C, Schlegelberger B, Dohner K, Dohner H, Schlenk RF, Ganser A (2009) Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 27:3000–3006. doi:10.1200/JCO.2008.16.7981

    PubMed  Google Scholar 

  • Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G (1998) Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17:3714–3725. doi:10.1093/emboj/17.13.3714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar AR, Yao Q, Li Q, Sam TA, Kersey JH (2011) t(4;11) leukemias display addiction to MLL-AF4 but not to AF4-MLL. Leuk Res 35:305–309. doi:10.1016/j.leukres.2010.08.011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ladopoulos V, Hofemeister H, Hoogenkamp M, Riggs AD, Stewart AF, Bonifer C (2013) The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol Cell Biol 33:1383–1393. doi:10.1128/MCB.01721-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, Mentens N, Beverloo HB, Pieters R, Speleman F, Odero MD, Bauters M, Froyen G, Marynen P, Vandenberghe P, Wlodarska I, Meijerink JP, Cools J (2007) Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39:593–595. doi:10.1038/ng2025

    CAS  PubMed  Google Scholar 

  • Lakhani VT, You YN, Wells SA (2007) The multiple endocrine neoplasia syndromes. Annu Rev Med 58:253–265. doi:10.1146/annurev.med.58.100305.115303

    CAS  PubMed  Google Scholar 

  • Lavau C, Szilvassy SJ, Slany R, Cleary ML (1997) Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 16:4226–4237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavau C, Du C, Thirman M, Zeleznik-Le N (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19:4655–4664. doi:10.1093/emboj/19.17.4655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH (2013) Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21:176–183. doi:10.1016/j.str.2012.11.011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Zhang Z, Li Y, Arnovitz S, Chen P, Huang H, Jiang X, Hong GM, Kunjamma RB, Ren H, He C, Wang CZ, Elkahloun AG, Valk PJ, Dohner K, Neilly MB, Bullinger L, Delwel R, Lowenberg B, Liu PP, Morgan R, Rowley JD, Yuan CS, Chen J (2013) PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 121:1422–1431. doi:10.1182/blood-2012-07-442004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37:429–437. doi:10.1016/j.molcel.2010.01.026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467:343–346. doi:10.1038/nature09350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maethner E, Garcia-Cuellar MP, Breitinger C, Takacova S, Divoky V, Hess JL, Slany RK (2013) MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 3:1553–1566

    CAS  PubMed  Google Scholar 

  • Maki K, Mitani K, Yamagata T, Kurokawa M, Kanda Y, Yazaki Y, Hirai H (1999) Transcriptional inhibition of p53 by the MLL/MEN chimeric protein found in myeloid leukemia. Blood 93:3216–3224

    CAS  PubMed  Google Scholar 

  • Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, Brock HW, Slany R, Hess JL (2003) Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 4:197–207

    CAS  PubMed  Google Scholar 

  • Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–1499. doi:10.1038/leu.2009.33

    CAS  PubMed  Google Scholar 

  • Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907. doi:10.1073/pnas.231473398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10:1107–1117

    CAS  PubMed  Google Scholar 

  • Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y, Schnepp RW, Krankel C, Livolsi VA, Gibbs D, Hua X, Roeder RG, Meyerson M, Hess JL (2005a) Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci U S A 102:749–754. doi:10.1073/pnas.0408836102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milne TA, Martin ME, Brock HW, Slany RK, Hess JL (2005b) Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 65:11367–11374. doi:10.1158/0008-5472.CAN-05-1041

    CAS  PubMed  Google Scholar 

  • Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ, Wang Z, Ruthenburg AJ, Elenitoba-Johnson KS, Roeder RG, Allis CD (2010) Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 38:853–863. doi:10.1016/j.molcel.2010.05.011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mo R, Rao SM, Zhu YJ (2006) Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J Biol Chem 281:15714–15720. doi:10.1074/jbc.M513245200

    CAS  PubMed  Google Scholar 

  • Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24:574–589. doi:10.1101/gad.1898410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31:4310–4318. doi:10.1128/MCB.06092-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK, Hess JL (2011) MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 39(77–86):e1–e5. doi:10.1016/j.exphem.2010.09.003

    PubMed  Google Scholar 

  • Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL, Slany RK (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–4454. doi:10.1182/blood-2007-05-090514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK (2009) Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 7:e1000249. doi:10.1371/journal.pbio.1000249

    PubMed Central  PubMed  Google Scholar 

  • Muntean AG, Giannola D, Udager AM, Hess JL (2008) The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood 112:4690–4693. doi:10.1182/blood-2008-01-134056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA, Basrur V, Elenitoba-Johnson KS, Hess JL (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17:609–621. doi:10.1016/j.ccr.2010.04.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura T (2005) NUP98 fusion in human leukemia: dysregulation of the nuclear pore and homeodomain proteins. Int J Hematol 82:21–27. doi:10.1532/IJH97.04160

    CAS  PubMed  Google Scholar 

  • Nguyen AT, He J, Taranova O, Zhang Y (2011a) Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 21:1370–1373. doi:10.1038/cr.2011.115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X, Zhang Y (2011b) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25:263–274. doi:10.1101/gad.2018511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novo FJ, Vizmanos JL (2006) Chromosome translocations in cancer: computational evidence for the random generation of double-strand breaks. Trends Genet 22:193–196. doi:10.1016/j.tig.2006.02.001

    CAS  PubMed  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178. doi:10.1016/j.cell.2005.02.020

    CAS  PubMed  Google Scholar 

  • Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30:4198–4210. doi:10.1038/emboj.2011.295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perkins A, Kongsuwan K, Visvader J, Adams JM, Cory S (1990) Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci U S A 87:8398–8402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933. doi:10.1016/j.cell.2012.06.046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30:49–57

    CAS  PubMed  Google Scholar 

  • Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113:3314–3322. doi:10.1182/blood-2008-04-154310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29:551–565. doi:10.1200/JCO.2010.30.7405

    PubMed Central  PubMed  Google Scholar 

  • Reeves R (2001) Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277:63–81

    CAS  PubMed  Google Scholar 

  • Rego EM, Pandolfi PP (2002) Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders? Trends Mol Med 8:396–405

    CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. doi:10.1016/j.cell.2007.05.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    CAS  PubMed  Google Scholar 

  • Rowley JD, Olney HJ (2002) International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 33:331–345

    PubMed  Google Scholar 

  • Satake N, Ishida Y, Otoh Y, Hinohara S, Kobayashi H, Sakashita A, Maseki N, Kaneko Y (1997) Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. Genes Chromosomes Cancer 20:60–63

    CAS  PubMed  Google Scholar 

  • Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9:1753–1765

    CAS  PubMed  Google Scholar 

  • Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814. doi:10.1038/nrm3230

    CAS  PubMed  Google Scholar 

  • Schuetz A, Allali-Hassani A, Martin F, Loppnau P, Vedadi M, Bochkarev A, Plotnikov AN, Arrowsmith CH, Min J (2006) Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J 25:4245–4252. doi:10.1038/sj.emboj.7601316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK, Dhawan J (2009) MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci U S A 106:4719–4724. doi:10.1073/pnas.0807136106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95. doi:10.1146/annurev-biochem-051710-134100

    CAS  PubMed  Google Scholar 

  • Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW (1996) An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271:1873–1876

    CAS  PubMed  Google Scholar 

  • Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554

    CAS  PubMed  Google Scholar 

  • Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28:665–676. doi:10.1016/j.molcel.2007.11.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slany RK, Lavau C, Cleary ML (1998) The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 18:122–129

    CAS  PubMed Central  PubMed  Google Scholar 

  • So CW, Caldas C, Liu MM, Chen SJ, Huang QH, Gu LJ, Sham MH, Wiedemann LM, Chan LC (1997) EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc Natl Acad Sci U S A 94:2563–2568

    CAS  PubMed Central  PubMed  Google Scholar 

  • So CW, Lin M, Ayton PM, Chen EH, Cleary ML (2003) Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4:99–110

    CAS  PubMed  Google Scholar 

  • Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451. doi:10.1016/j.molcel.2010.04.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H, Baruchel A, Toribio ML, Sigaux F (2005) HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106:274–286. doi:10.1182/blood-2004-10-3900

    CAS  PubMed  Google Scholar 

  • Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B, Van Roy N, Vandesompele J, Graux C, Uyttebroeck A, Boogaerts M, De Moerloose B, Benoit Y, Selleslag D, Billiet J, Robert A, Huguet F, Vandenberghe P, De Paepe A, Marynen P, Hagemeijer A (2005) A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19:358–366. doi:10.1038/sj.leu.2403657

    CAS  PubMed  Google Scholar 

  • Srinivasan RS, de Erkenez AC, Hemenway CS (2003) The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene 22:3395–3406. doi:10.1038/sj.onc.1206361

    CAS  PubMed  Google Scholar 

  • Stark B, Umiel T, Mammon Z, Galili N, Dzaledetti M, Cohen IJ, Steinberg M, Vogel R, Zaizov R (1986) Leukemia of early infancy. Early B-cell lineage associated with t(4:11). Cancer 58:1265–1271

    CAS  PubMed  Google Scholar 

  • Starkova J, Zamostna B, Mejstrikova E, Krejci R, Drabkin HA, Trka J (2010) HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL. Pediatr Blood Cancer 55:1072–1082. doi:10.1002/pbc.22749

    PubMed  Google Scholar 

  • Stauber RH, Bier C, Knauer SK (2012) Targeting Taspase1 for cancer therapy–letter. Cancer Res 72:2912. doi:10.1158/0008-5472.CAN-12-0150, author reply 2913

    CAS  PubMed  Google Scholar 

  • Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, Galimi F, Le Beau MM, Evans RM, Kogan SC (2006) Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 9:81–94. doi:10.1016/j.ccr.2005.12.030

    CAS  PubMed  Google Scholar 

  • Takeda S, Chen DY, Westergard TD, Fisher JK, Rubens JA, Sasagawa S, Kan JT, Korsmeyer SJ, Cheng EH, Hsieh JJ (2006) Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev 20:2397–2409. doi:10.1101/gad.1449406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I, Hess JL (2011) CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20:563–575. doi:10.1016/j.ccr.2011.09.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J, Zhang H, Liu Z, Ernst P, Koretzky GA, Hua X (2010) MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17:148–159. doi:10.1016/j.ccr.2009.12.034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G (2001) Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 21:224–234. doi:10.1128/MCB.21.1.224-234.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tkachuk DC, Kohler S, Cleary ML (1992) Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691–700

    CAS  PubMed  Google Scholar 

  • Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, Rad L, Ellis P, Andrews R, Banerjee R, Grove C, Wang W, Liu P, Wright P, Arends M, Bradley A (2011) Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 43:470–475. doi:10.1038/ng.796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vastenhouw NL, Schier AF (2012) Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 24:374–386. doi:10.1016/j.ceb.2012.03.009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermaelen K, Barbieri D, Michaux JL, Tricot G, Casteels-Van Daele M, Noens L, Van Hove W, Drochmans A, Louwagie A, Van den Berghe H (1983) Anomalies of the long arm of chromosome 11 in human myelo- and lymphoproliferative disorders. I. Acute nonlymphocytic leukemia. Cancer Genet Cytogenet 10:105–116

    CAS  PubMed  Google Scholar 

  • Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151:181–193. doi:10.1016/j.cell.2012.09.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, Ge K, Krumlauf R, Shilatifard A (2009) Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 29:6074–6085. doi:10.1128/MCB.00924-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang QF, Wu G, Mi S, He F, Wu J, Dong J, Luo RT, Mattison R, Kaberlein JJ, Prabhakar S, Ji H, Thirman MJ (2011) MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117:6895–6905. doi:10.1182/blood-2010-12-324699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Muntean AG, Hess JL (2012) ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood 119:1151–1161. doi:10.1182/blood-2011-06-362079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watts KL, Nelson V, Wood BL, Trobridge GD, Beard BC, Humphries RK, Kiem HP (2012) Hematopoietic stem cell expansion facilitates multilineage engraftment in a nonhuman primate cord blood transplantation model. Exp Hematol 40:187–196. doi:10.1016/j.exphem.2011.11.009

    PubMed Central  PubMed  Google Scholar 

  • Wiederschain D, Kawai H, Gu J, Shilatifard A, Yuan ZM (2003) Molecular basis of p53 functional inactivation by the leukemic protein MLL-ELL. Mol Cell Biol 23:4230–4246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J, Biswas D, Roeder RG, Allis CD, Melnick A, de Bruijn MF, Milne TA (2013) RUNX1 is a Key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 3:116–127. doi:10.1016/j.celrep.2012.12.016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21:2762–2774. doi:10.1101/gad.1602107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008) Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28:7337–7344. doi:10.1128/MCB.00976-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872. doi:10.1016/j.cell.2005.03.036

    CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90. doi:10.1038/nature04815

    CAS  PubMed  Google Scholar 

  • Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ (2003) MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 100:8342–8347. doi:10.1073/pnas.1436338100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46. doi:10.1016/j.ccr.2008.05.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M (2002) Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100:3710–3718. doi:10.1182/blood-2002-04-1015

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218. doi:10.1016/j.cell.2005.09.025

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17:198–212. doi:10.1016/j.ccr.2009.12.040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508. doi:10.1038/378505a0

    CAS  PubMed  Google Scholar 

  • Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U, Borkhardt A, Chanda SK, Walker J, Soden R, Hess JL, Slany RK (2004) Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24:617–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar MP, Hess JL, Slany RK (2005) The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 24:5525–5532. doi:10.1038/sj.onc.1208699

    CAS  PubMed  Google Scholar 

  • Zeleznik-Le NJ, Harden AM, Rowley JD (1994) 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A 91:10610–10614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Peres L, Honore N, Nasr R, Zhu J, de The H (2006) Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization. Proc Natl Acad Sci U S A 103:9238–9243. doi:10.1073/pnas.0603324103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143. doi:10.1146/annurev-biochem-052610-095910

    CAS  PubMed  Google Scholar 

  • Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD et al (1991) Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A 88:10735–10739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zorko NA, Bernot KM, Whitman SP, Siebenaler RF, Ahmed EH, Marcucci GG, Yanes DA, McConnell KK, Mao C, Kalu C, Zhang X, Jarjoura D, Dorrance AM, Heerema NA, Lee BH, Huang G, Marcucci G, Caligiuri MA (2012) Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 120:1130–1136. doi:10.1182/blood-2012-03-415067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV, Shi J, Weissmueller S, Fellmann C, Taylor MJ, Weissenboeck M, Graeber TG, Kogan SC, Vakoc CR, Lowe SW (2011) An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 25:1628–1640. doi:10.1101/gad.17269211

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Slany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slany, R.K. (2014). Role of the Trithorax (MLL): HOX Axis in HSC Development, Function, and Leukemia. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_7

Download citation

Publish with us

Policies and ethics