Skip to main content

The Molecular Basis of B Cell Development and the Role of Deregulated Transcription and Epigenetics in Leukaemia and Lymphoma

  • Chapter
  • First Online:
Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1154 Accesses

Abstract

The development of B cells from their haematopoietic stem cell origins relies on a network of transcription factors that centre on PU.1, Ikaros and Pax5. These transcription factors cooperate to direct progenitor cells towards the early B cell lineage. Further maturation is then dependent on the process of V(D)J recombination, which creates a population of B cells expressing a hugely diverse repertoire of antigen receptors on their cell surface. When an antigen is bound by its cognate receptor, the antigen–antibody interaction is fine-tuned by somatic hypermutation (SHM) and the immune response is expanded by class switch recombination (CSR), which creates antibodies with different effector functions. The processes of V(D)J recombination, SHM and CSR all involve either the breaking or mutating of genomic DNA. Mistakes in any of these reactions can lead to chromosome translocations, which are thought to be the key event that triggers almost all lymphoid cancers. The first part of this review will discuss the transcriptional and epigenetic changes that lead to B cell lineage commitment, whilst the second part will cover the deregulation of these processes and their role in triggering B cell leukaemias and lymphomas. Lastly, we discuss recent advances in our understanding of the role of deregulated epigenetic and transcription factors in the development of B cell cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarrategui I, Krangel MS (2006) Regulation of T cell receptor-alpha gene recombination by transcription. Nat Immunol 7:1109–1115. doi:10.1038/ni1379, ni1379 [pii]

    CAS  PubMed  Google Scholar 

  • Abarrategui I, Krangel MS (2007) Noncoding transcription controls downstream promoters to regulate T-cell receptor alpha recombination. EMBO J 26:4380–4390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538

    CAS  PubMed  Google Scholar 

  • Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751. doi:10.1038/29457

    CAS  PubMed  Google Scholar 

  • Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, Coffman R, Rosenberg N, Tonegawa S, Baltimore D (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 3:1209–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angelin-Duclos C, Calame K (1998) Evidence that immunoglobulin VH-DJ recombination does not require germ line transcription of the recombining variable gene segment. Mol Cell Biol 18:6253–6264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atchison ML (1988) Enhancers: mechanisms of action and cell specificity. Annu Rev Cell Biol 4:127–153. doi:10.1146/annurev.cb.04.110188.001015

    CAS  PubMed  Google Scholar 

  • Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ (1987) Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396–2400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384:641–643. doi:10.1038/384641a0

    CAS  PubMed  Google Scholar 

  • Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109(Suppl):S45–S55, S009286740200675X [pii]

    CAS  PubMed  Google Scholar 

  • Baumann M, Mamais A, McBlane F, Xiao H, Boyes J (2003) Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J 22:5197–5207. doi:10.1093/emboj/cdg487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093. doi:10.1126/science, 1085703 301/5636/1090 [pii]

    CAS  PubMed  Google Scholar 

  • Bereshchenko OR, Gu W, Dalla-Favera R (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32:606–613. doi:10.1038/ng1018, ng1018 [pii]

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    CAS  PubMed  Google Scholar 

  • Bertolino E, Reddy K, Medina KL, Parganas E, Ihle J, Singh H (2005) Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 6:836–843. doi:10.1038/ni1226, ni1226 [pii]

    CAS  PubMed  Google Scholar 

  • Bevington S, Boyes J (2013) Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J. doi:10.1038/emboj.2013.42, emboj201342 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Blackwell TK, Moore MW, Yancopoulos GD, Suh H, Lutzker S, Selsing E, Alt FW (1986) Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature 324:585–589. doi:10.1038/324585a0

    CAS  PubMed  Google Scholar 

  • Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH (1998) CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA 95:2061–2066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Croce CM (2007) Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117:2059–2066. doi:10.1172/JCI32577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101, 0307323101 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casali P, Pal Z, Xu Z, Zan H (2006) DNA repair in antibody somatic hypermutation. Trends Immunol 27:313–321. doi:10.1016/j.it.2006.05.001, S1471-4906(06)00143-8 [pii]

    CAS  PubMed  Google Scholar 

  • Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Sen R (2004) Regulation of immunoglobulin heavy-chain gene rearrangements. Immunol Rev 200:182–196. doi:10.1111/j.0105-2896.2004.00177.x, IMR177 [pii]

    CAS  PubMed  Google Scholar 

  • Cobaleda C, Schebesta A, Delogu A, Busslinger M (2007) Pax5: the guardian of B cell identity and function. Nat Immunol 8:463–470. doi:10.1038/ni1454, ni1454 [pii]

    CAS  PubMed  Google Scholar 

  • Curry JD, Schulz D, Guidos CJ, Danska JS, Nutter L, Nussenzweig A, Schlissel MS (2007) Chromosomal reinsertion of broken RSS ends during T cell development. J Exp Med 204:2293–2303. doi:10.1084/jem.20070583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Silva NS, Simonetti G, Heise N, Klein U (2012) The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol Rev 247:73–92. doi:10.1111/j.1600-065X.2012.01113.x

    PubMed  Google Scholar 

  • Degner SC, Verma-Gaur J, Wong TP, Bossen C, Iverson GM, Torkamani A, Vettermann C, Lin YC, Ju Z, Schulz D, Murre CS, Birshtein BK, Schork NJ, Schlissel MS, Riblet R, Murre C, Feeney AJ (2011) CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proc Natl Acad Sci USA 108:9566–9571. doi:10.1073/pnas.1019391108, 1019391108 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441, 8531 [pii]

    CAS  PubMed  Google Scholar 

  • Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M (2006) Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24:269–281. doi:10.1016/j.immuni.2006.01.012, S1074-7613(06)00111-7 [pii]

    CAS  PubMed  Google Scholar 

  • Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22. doi:10.1146/annurev.biochem.76.061705.090740

    PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duber S, Engel H, Rolink A, Kretschmer K, Weiss S (2003) Germline transcripts of immunoglobulin light chain variable regions are structurally diverse and differentially expressed. Mol Immunol 40:509–516

    CAS  PubMed  Google Scholar 

  • Duquette ML, Pham P, Goodman MF, Maizels N (2005) AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogene 24:5791–5798. doi:10.1038/sj.onc.1208746, 1208746 [pii]

    CAS  PubMed  Google Scholar 

  • Ebert A, McManus S, Tagoh H, Medvedovic J, Salvagiotto G, Novatchkova M, Tamir I, Sommer A, Jaritz M, Busslinger M (2011) The distal V(H) gene cluster of the Igh locus contains distinct regulatory elements with Pax5 transcription factor-dependent activity in pro-B cells. Immunity 34:175–187. doi:10.1016/j.immuni.2011.02.005, S1074-7613(11)00043-4 [pii]

    CAS  PubMed  Google Scholar 

  • Eckner R, Ludlow JW, Lill NL, Oldread E, Arany Z, Modjtahedi N, DeCaprio JA, Livingston DM, Morgan JA (1996) Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 16:3454–3464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U (1993) PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer. Mol Cell Biol 13:6452–6461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U (1995) Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev 9:1377–1387

    CAS  PubMed  Google Scholar 

  • Elkin SK, Matthews AG, Oettinger MA (2003) The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 22:1931–1938. doi:10.1093/emboj/cdg184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elliott B, Richardson C, Jasin M (2005) Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17:885–894. doi:10.1016/j.molcel.2005.02.028, S1097-2765(05)01144-5 [pii]

    CAS  PubMed  Google Scholar 

  • Engel H, Rolink A, Weiss S (1999) B cells are programmed to activate kappa and lambda for rearrangement at consecutive developmental stages. Eur J Immunol 29:2167–2176

    CAS  PubMed  Google Scholar 

  • Espinoza CR, Feeney AJ (2005) The extent of histone acetylation correlates with the differential rearrangement frequency of individual VH genes in pro-B cells. J Immunol 175:6668–6675

    CAS  PubMed  Google Scholar 

  • Featherstone K, Wood AL, Bowen AJ, Corcoran AE (2010) The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem 285:9327–9338. doi:10.1074/jbc.M109.098251, M109.098251 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernex C, Capone M, Ferrier P (1995) The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol Cell Biol 15:3217–3226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreiros Vidal I, Carroll T, Taylor B, Terry A, Liang Z, Bruno L, Dharmalingam G, Khadayate S, Cobb BS, Smale ST, Spivakov M, Srivastava P, Petretto E, Fisher AG, Merkenschlager M (2013) Genome-wide identification of Ikaros targets elucidates its contribution to mouse B cell lineage specification and pre-B cell differentiation. Blood. doi:10.1182/blood-2012-08-450114, blood-2012-08-450114 [pii]

    PubMed  Google Scholar 

  • Fitzsimmons SP, Bernstein RM, Max EE, Skok JA, Shapiro MA (2007) Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Ig kappa locus. J Immunol 179:5264–5273, 79/8/5264 [pii]

    CAS  PubMed  Google Scholar 

  • Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M (2004) Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 18:411–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geier JK, Schlissel MS (2006) Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol 18:31–39. doi:10.1016/j.smim.2005.11.001, S1044-5323(05)00086-2 [pii]

    CAS  PubMed  Google Scholar 

  • Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101–132. doi:10.1146/annurev.biochem.71.090501.150203, 090501.150203 [pii]

    CAS  PubMed  Google Scholar 

  • Golding A, Chandler S, Ballestar E, Wolffe AP, Schlissel MS (1999) Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 18:3712–3723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y (2005) Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol 6:198–203

    CAS  PubMed  Google Scholar 

  • Gordon SJ, Saleque S, Birshtein BK (2003) Yin Yang 1 is a lipopolysaccharide-inducible activator of the murine 3′ Igh enhancer, hs3. J Immunol 170:5549–5557

    CAS  PubMed  Google Scholar 

  • Gorman JR, Alt FW (1998) Regulation of immunoglobulin light chain isotype expression. Adv Immunol 69:113–181

    CAS  PubMed  Google Scholar 

  • Gorman JR, van der Stoep N, Monroe R, Cogne M, Davidson L, Alt FW (1996) The Ig(kappa) enhancer influences the ratio of Ig(kappa) versus Ig(lambda) B lymphocytes. Immunity 5:241–252

    CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606, S0092-8674(00)80521-8 [pii]

    CAS  PubMed  Google Scholar 

  • Guo C, Gerasimova T, Hao H, Ivanova I, Chakraborty T, Selimyan R, Oltz EM, Sen R (2011a) Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus. Cell 147:332–343. doi:10.1016/j.cell.2011.08.049, S0092-8674(11)01082-8 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo C, Yoon HS, Franklin A, Jain S, Ebert A, Cheng HL, Hansen E, Despo O, Bossen C, Vettermann C, Bates JG, Richards N, Myers D, Patel H, Gallagher M, Schlissel MS, Murre C, Busslinger M, Giallourakis CC, Alt FW (2011b) CTCF-binding elements mediate control of V(D)J recombination. Nature 477:424–430. doi:10.1038/nature10495, nature10495 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen JD, McBlane JF (2000) Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: a common evolutionary connection. Curr Top Microbiol Immunol 248:111–135

    CAS  PubMed  Google Scholar 

  • Hesslein DG, Pflugh DL, Chowdhury D, Bothwell AL, Sen R, Schatz DG (2003) Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev 17:37–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470, S0092-8674(00)81587-1 [pii]

    CAS  PubMed  Google Scholar 

  • Hodawadekar S, Park K, Farrar MA, Atchison ML (2012) A developmentally controlled competitive STAT5-PU.1 DNA binding mechanism regulates activity of the Ig kappa E3′ enhancer. J Immunol 188:2276–2284. doi:10.4049/jimmunol.1102239, jimmunol.1102239 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Muegge K (2001) Control of chromatin accessibility for V(D)J recombination by interleukin-7. J Leukoc Biol 69:907–911

    CAS  PubMed  Google Scholar 

  • Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B, Chaganti RS, Dalla-Favera R (1997) Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 17:226–230. doi:10.1038/ng1097-226

    CAS  PubMed  Google Scholar 

  • Inlay M, Alt FW, Baltimore D, Xu Y (2002) Essential roles of the kappa light chain intronic enhancer and 3′ enhancer in kappa rearrangement and demethylation. Nat Immunol 3:463–468

    CAS  PubMed  Google Scholar 

  • Inlay MA, Tian H, Lin T, Xu Y (2004) Important roles for E protein binding sites within the immunoglobulin kappa chain intronic enhancer in activating Vkappa Jkappa rearrangement. J Exp Med 200:1205–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jager U, Bocskor S, Le T, Mitterbauer G, Bolz I, Chott A, Kneba M, Mannhalter C, Nadel B (2000) Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95:3520–3529

    CAS  PubMed  Google Scholar 

  • Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG (2010) The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141:419–431. doi:10.1016/j.cell.2010.03.010, S0092-8674(10)00246-1 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janz S, Potter M, Rabkin CS (2003) Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer 36:211–223

    CAS  PubMed  Google Scholar 

  • Johnson K, Angelin-Duclos C, Park S, Calame KL (2003) Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 23:2438–2450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson K, Hashimshony T, Sawai CM, Pongubala JM, Skok JA, Aifantis I, Singh H (2008) Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28:335–345. doi:10.1016/j.immuni.2007.12.019, S1074-7613(08)00044-7 [pii]

    CAS  PubMed  Google Scholar 

  • Jones ME, Zhuang Y (2009) Regulation of V(D)J recombination by E-protein transcription factors. Adv Exp Med Biol 650:148–156

    CAS  PubMed  Google Scholar 

  • Kelsoe G (1996) The germinal center: a crucible for lymphocyte selection. Semin Immunol 8:179–184. doi:10.1006/smim.1996.0022, S1044-5323(96)90022-6 [pii]

    CAS  PubMed  Google Scholar 

  • Kirsch IR, Morton CC, Nakahara K, Leder P (1982) Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science 216:301–303

    CAS  PubMed  Google Scholar 

  • Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, Ludwig T, Rajewsky K, Dalla-Favera R (2006) Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 7:773–782. doi:10.1038/ni1357, ni1357 [pii]

    CAS  PubMed  Google Scholar 

  • Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296:158–162

    CAS  PubMed  Google Scholar 

  • Kovalchuk AL, Kim JS, Park SS, Coleman AE, Ward JM, Morse HC 3rd, Kishimoto T, Potter M, Janz S (2002) IL-6 transgenic mouse model for extraosseous plasmacytoma. Proc Natl Acad Sci USA 99:1509–1514. doi:10.1073/pnas.022643999, 022643999 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kridel R, Sehn LH, Gascoyne RD (2012) Pathogenesis of follicular lymphoma. J Clin Invest 122:3424–3431. doi:10.1172/JCI63186, 63186 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5:251–262. doi:10.1038/nrc1589, nrc1589 [pii]

    PubMed  Google Scholar 

  • Kuppers R, Dalla-Favera R (2001) Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20:5580–5594. doi:10.1038/sj.onc.1204640

    CAS  PubMed  Google Scholar 

  • Kurahashi H, Inagaki H, Ohye T, Kogo H, Kato T, Emanuel BS (2006) Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst) 5:1136–1145. doi:10.1016/j.dnarep.2006.05.035, S1568-7864(06)00175-3 [pii]

    CAS  Google Scholar 

  • Kwon J, Imbalzano AN, Matthews A, Oettinger MA (1998) Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell 2:829–839

    CAS  PubMed  Google Scholar 

  • Laiosa CV, Stadtfeld M, Graf T (2006) Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol 24:705–738. doi:10.1146/annurev.immunol.24.021605.090742

    CAS  PubMed  Google Scholar 

  • Lazorchak AS, Schlissel MS, Zhuang Y (2006) E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B cells. Mol Cell Biol 26:810–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lennon GG, Perry RP (1985) C mu-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318:475–478

    CAS  PubMed  Google Scholar 

  • Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56:27–150

    CAS  PubMed  Google Scholar 

  • Lewis SM, Agard E, Suh S, Czyzyk L (1997) Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol 17:3125–3136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD (2004) The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 18:1–11. doi:10.1101/gad.1161904, 18/1/1 [pii]

    PubMed  Google Scholar 

  • Liedtke M, Cleary ML (2009) Therapeutic targeting of MLL. Blood 113:6061–6068. doi:10.1182/blood-2008-12-197061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Limpens J, de Jong D, van Krieken JH, Price CG, Young BD, van Ommen GJ, Kluin PM (1991) Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6:2271–2276

    CAS  PubMed  Google Scholar 

  • Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R, Sigvardsson M, Hagman J, Espinoza CA, Dutkowski J, Ideker T, Glass CK, Murre C (2010) A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 11:635–643. doi:10.1038/ni.1891, ni.1891 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Benner C, Mansson R, Heinz S, Miyazaki K, Miyazaki M, Chandra V, Bossen C, Glass CK, Murre C (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13:1196–1204. doi:10.1038/ni.2432, ni.2432 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, Shi Y (2007a) Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 21:1179–1189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S (2007b) A plant homeodomain in Rag-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27(4):561–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641. doi:10.1038/sj.leu.2402834, 2402834 [pii]

    CAS  PubMed  Google Scholar 

  • Lu R, Medina KL, Lancki DW, Singh H (2003) IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev 17:1703–1708

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacLennan IC (2005) Germinal centers still hold secrets. Immunity 22:656–657. doi:10.1016/j.immuni.2005.06.002, S1074-7613(05)00167-6 [pii]

    CAS  PubMed  Google Scholar 

  • Maes J, O’Neill LP, Cavelier P, Turner BM, Rougeon F, Goodhardt M (2001) Chromatin remodeling at the Ig loci prior to V(D)J recombination. J Immunol 167:866–874

    CAS  PubMed  Google Scholar 

  • Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, Strasser A, Busslinger M (2010) Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 11:171–179. doi:10.1038/ni.1827, ni.1827 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal M, Powers SE, Ochiai K, Georgopoulos K, Kee BL, Singh H, Clark MR (2009) Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat Immunol 10:1110–1117. doi:10.1038/ni.1785, ni.1785 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marculescu R, Le T, Simon P, Jaeger U, Nadel B (2002) V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med 195:85–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450:1106–1110. doi:10.1038/nature06431, nature06431 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBlane F, Boyes J (2000) Stimulation of V(D)J recombination by histone acetylation. Curr Biol 10:483–486

    CAS  PubMed  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMurry MT, Krangel MS (2000) A role for histone acetylation in the developmental regulation of VDJ recombination [see comments]. Science 287:495–498

    CAS  PubMed  Google Scholar 

  • Messier TL, O’Neill JP, Hou SM, Nicklas JA, Finette BA (2003) In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J 22:1381–1388. doi:10.1093/emboj/cdg137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Messier TL, O’Neill JP, Finette BA (2006) V(D)J recombinase mediated inter-chromosomal HPRT alterations at cryptic recombination signal sequences in peripheral human T cells. Hum Mutat 27:829. doi:10.1002/humu.9440

    PubMed  Google Scholar 

  • Morshead KB, Ciccone DN, Taverna SD, Allis CD, Oettinger MA (2003) Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci USA 100:11577–11582. doi:10.1073/pnas.1932643100, 1932643100 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muljo SA, Schlissel MS (2003) A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 4:31–37

    CAS  PubMed  Google Scholar 

  • Nagulapalli S, Atchison ML (1998) Transcription factor Pip can enhance DNA binding by E47, leading to transcriptional synergy involving multiple protein domains. Mol Cell Biol 18:4639–4650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagulapalli S, Goheer A, Pitt L, McIntosh LP, Atchison ML (2002) Mechanism of e47-Pip interaction on DNA resulting in transcriptional synergy and activation of immunoglobulin germ line sterile transcripts. Mol Cell Biol 22:7337–7350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neiditch MB, Lee GS, Huye LE, Brandt VL, Roth DB (2002) The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol Cell 9:871–878, S109727650200494X [pii]

    CAS  PubMed  Google Scholar 

  • Nelsen B, Tian G, Erman B, Gregoire J, Maki R, Graves B, Sen R (1993) Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science 261:82–86

    CAS  PubMed  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719, S1097276503000923 [pii]

    CAS  PubMed  Google Scholar 

  • Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM (2007) Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 282:4408–4416

    CAS  PubMed  Google Scholar 

  • Nikolajczyk BS, Sanchez JA, Sen R (1999) ETS protein-dependent accessibility changes at the immunoglobulin mu heavy chain enhancer. Immunity 11:11–20

    CAS  PubMed  Google Scholar 

  • Nussenzweig A, Nussenzweig MC (2010) Origin of chromosomal translocations in lymphoid cancer. Cell 141:27–38. doi:10.1016/j.cell.2010.03.016, S0092-8674(10)00289-8 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959, S0092-8674(00)82001-2 [pii]

    CAS  PubMed  Google Scholar 

  • Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62:4075–4080

    CAS  PubMed  Google Scholar 

  • Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288

    CAS  PubMed  Google Scholar 

  • Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, Chaganti RS, Klein U, Kuppers R, Rajewsky K, Dalla-Favera R (1998) BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 95:11816–11821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412:341–346. doi:10.1038/35085588, 35085588 [pii]

    CAS  PubMed  Google Scholar 

  • Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R (2011a) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471:189–195. doi:10.1038/nature09730, nature09730 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, Chan J, Bhagat G, Chadburn A, Gaidano G, Mullighan CG, Rabadan R, Dalla-Favera R (2011b) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830–837. doi:10.1038/ng.892, ng.892 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD (2008) The biochemistry of somatic hypermutation. Annu Rev Immunol 26:481–511. doi:10.1146/annurev.immunol.26.021607.090236

    CAS  PubMed  Google Scholar 

  • Perkins EJ, Kee BL, Ramsden DA (2004) Histone 3 lysine 4 methylation during the pre-B to immature B-cell transition. Nucleic Acids Res 32:1942–1947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    CAS  PubMed  Google Scholar 

  • Poltoratsky V, Goodman MF, Scharff MD (2000) Error-prone candidates vie for somatic mutation. J Exp Med 192:F27–F30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol Cell Biol 12:368–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potter M, Wiener F (1992) Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13:1681–1697

    CAS  PubMed  Google Scholar 

  • Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, Do Cruzeiro M, Delhommeau F, Arnulf B, Stern MH, Godley L, Opolon P, Tilly H, Solary E, Duffourd Y, Dessen P, Merle-Beral H, Nguyen-Khac F, Fontenay M, Vainchenker W, Bastard C, Mercher T, Bernard OA (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38. doi:10.1016/j.ccr.2011.06.003, S1535-6108(11)00225-X [pii]

    CAS  PubMed  Google Scholar 

  • Rabkin CS, Janz S (2008) Mechanisms and consequences of chromosomal translocation. Cancer Epidemiol Biomarkers Prev 17:1849–1851. doi:10.1158/1055-9965.EPI-07-2902, 17/8/1849 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavan SC, Kirsch IR, Lieber MR (2001) Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem 276:29126–29133. doi:10.1074/jbc.M103797200, M103797200 [pii]

    CAS  PubMed  Google Scholar 

  • Raghavan SC, Houston S, Hegde BG, Langen R, Haworth IS, Lieber MR (2004a) Stability and strand asymmetry in the non-B DNA structure at the bcl-2 major breakpoint region. J Biol Chem 279:46213–46225. doi:10.1074/jbc.M406280200, M406280200 [pii]

    CAS  PubMed  Google Scholar 

  • Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR (2004b) A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428:88–93. doi:10.1038/nature02355, nature02355 [pii]

    CAS  PubMed  Google Scholar 

  • Raghavan SC, Swanson PC, Ma Y, Lieber MR (2005) Double-strand break formation by the RAG complex at the bcl-2 major breakpoint region and at other non-B DNA structures in vitro. Mol Cell Biol 25:5904–5919. doi:10.1128/MCB.25.14.5904-5919.2005, 25/14/5904 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, McBride KM, Eisenreich TR, Chen J, Dickins RA, Lowe SW, Nussenzweig A, Nussenzweig MC (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109. doi:10.1038/nature04495, nature04495 [pii]

    CAS  PubMed  Google Scholar 

  • Ramon-Maiques S, Kuo AJ, Carney D, Matthews AG, Oettinger MA, Gozani O, Yang W (2007) The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 104:18993–18998. doi:10.1073/pnas.0709170104, 0709170104 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsden DA, Weed BD, Reddy YV (2010) V(D)J recombination: born to be wild. Semin Cancer Biol. doi:10.1016/j.semcancer.2010.06.002, S1044-579X(10)00044-1 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Rivera RR, Stuiver MH, Steenbergen R, Murre C (1993) Ets proteins: new factors that regulate immunoglobulin heavy-chain gene expression. Mol Cell Biol 13:7163–7169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robbiani DF, Nussenzweig MC (2013) Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu Rev Pathol 8:79–103. doi:10.1146/annurev-pathol-020712-164004

    CAS  PubMed  Google Scholar 

  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038. doi:10.1016/j.cell.2008.09.062, S0092-8674(08)01310-X [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roldan E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA (2005) Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 6:31–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roth DB (2003) Restraining the V(D)J recombinase. Nat Rev Immunol 3:656–666

    CAS  PubMed  Google Scholar 

  • Roth DB, Roth SY (2000) Unequal access: regulating V(D)J recombination through chromatin remodeling. Cell 103:699–702

    CAS  PubMed  Google Scholar 

  • Rudin CM, Storb U (1992) Two conserved essential motifs of the murine immunoglobulin lambda enhancers bind B-cell-specific factors. Mol Cell Biol 12:309–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto S, Wakae K, Anzai Y, Murai K, Tamaki N, Miyazaki M, Miyazaki K, Romanow WJ, Ikawa T, Kitamura D, Yanagihara I, Minato N, Murre C, Agata Y (2012) E2A and CBP/p300 act in synergy to promote chromatin accessibility of the immunoglobulin kappa locus. J Immunol 188:5547–5560. doi:10.4049/jimmunol.1002346, jimmunol.1002346 [pii]

    CAS  PubMed  Google Scholar 

  • Sayegh CE, Jhunjhunwala S, Riblet R, Murre C (2005) Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev 19:322–327. doi:10.1101/gad.1254305, 19/3/322 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M (2007) Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27:49–63. doi:10.1016/j.immuni.2007.05.019, S1074-7613(07)00331-7 [pii]

    CAS  PubMed  Google Scholar 

  • Schlissel MS (2004) Regulation of activation and recombination of the murine Igkappa locus. Immunol Rev 200:215–223

    CAS  PubMed  Google Scholar 

  • Schlissel MS, Baltimore D (1989) Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell 58:1001–1007

    CAS  PubMed  Google Scholar 

  • Schwarzenbach H, Newell JW, Matthias P (1995) Involvement of the Ets family factor PU.1 in the activation of immunoglobulin promoters. J Biol Chem 270:898–907

    CAS  PubMed  Google Scholar 

  • Sciammas R, Davis MM (2004) Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J Immunol 172:5427–5440

    CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    CAS  PubMed  Google Scholar 

  • Seet CS, Brumbaugh RL, Kee BL (2004) Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J Exp Med 199:1689–1700. doi:10.1084/jem.20032202, jem.20032202 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, Giltnane JM, Yang L, Zhao H, Calame K, Staudt LM (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62, S1074761302003357 [pii]

    CAS  PubMed  Google Scholar 

  • Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93. doi:10.1016/j.immuni.2004.06.010, S1074761304001670 [pii]

    CAS  PubMed  Google Scholar 

  • Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W, Powell J, Dave S, Yu X, Zhao H, Zeng Y, Chen B, Epstein J, Staudt LM (2008) IRF4 addiction in multiple myeloma. Nature 454:226–231. doi:10.1038/nature07064, nature07064 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19:607–620, S107476130300267X [pii]

    CAS  PubMed  Google Scholar 

  • Shin MK, Koshland ME (1993) Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dev 7:2006–2015

    CAS  PubMed  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC, Pui CH, Grosveld G, Downing JR (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9:1985–1989

    CAS  PubMed  Google Scholar 

  • Sikes ML, Meade A, Tripathi R, Krangel MS, Oltz EM (2002) Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc Natl Acad Sci USA 99:12309–12314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skok JA, Gisler R, Novatchkova M, Farmer D, de Laat W, Busslinger M (2007) Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol 8:378–387. doi:10.1038/ni1448, ni1448 [pii]

    CAS  PubMed  Google Scholar 

  • Spooner CJ, Cheng JX, Pujadas E, Laslo P, Singh H (2009) A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 31:576–586. doi:10.1016/j.immuni.2009.07.011, S1074-7613(09)00415-4 [pii]

    CAS  PubMed  Google Scholar 

  • Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292. doi:10.1146/annurev.immunol.26.021607.090248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, Sather H, Navara C, Nachman J, Steinherz PG, Gaynon PS, Seibel N, Vassilev A, Juran BD, Reaman GH, Uckun FM (1999) Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17:3753–3766

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. doi:10.1126/science.1170116, 1170116 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda S, Zou YR, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teitell MA, Pandolfi PP (2009) Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol 4:175–198. doi:10.1146/annurev.pathol.4.110807.092227

    CAS  PubMed  Google Scholar 

  • Teng G, Papavasiliou FN (2007) Immunoglobulin somatic hypermutation. Annu Rev Genet 41:107–120. doi:10.1146/annurev.genet.41.110306.130340

    CAS  PubMed  Google Scholar 

  • Thomas-Tikhonenko A, Cozma D (2008) PAX5 and B-cell neoplasms: transformation through presentation. Future Oncol 4:5–9. doi:10.2217/14796694.4.1.5

    CAS  PubMed  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    CAS  PubMed  Google Scholar 

  • Torrano V, Procter J, Cardus P, Greaves M, Ford AM (2011) ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 118:4910–4918. doi:10.1182/blood-2011-05-354266, blood-2011-05-354266 [pii]

    CAS  PubMed  Google Scholar 

  • Tripathi RK, Mathieu N, Spicuglia S, Payet D, Verthuy C, Bouvier G, Depetris D, Mattei MG, Hempe LW, Ferrier P (2000) Definition of a T-cell receptor beta gene core enhancer of V(D)J recombination by transgenic mapping. Mol Cell Biol 20:42–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi R, Jackson A, Krangel MS (2002) A change in the structure of Vbeta chromatin associated with TCR beta allelic exclusion. J Immunol 168:2316–2324

    CAS  PubMed  Google Scholar 

  • Tsai AG, Lieber MR (2010) Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics 11 Suppl 1: S1. doi:10.1186/1471-2164-11-S1-S1, 1471-2164-11-S1-S1 [pii]

    Google Scholar 

  • Tycko B, Sklar J (1990) Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells 2:1–8

    CAS  PubMed  Google Scholar 

  • Unniraman S, Zhou S, Schatz DG (2004) Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nat Immunol 5:1117–1123. doi:10.1038/ni1127, ni1127 [pii]

    CAS  PubMed  Google Scholar 

  • van Gent DC, Mizuuchi K, Gellert M (1996) Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594

    PubMed  Google Scholar 

  • Vanasse GJ, Concannon P, Willerford DM (1999) Regulated genomic instability and neoplasia in the lymphoid lineage. Blood 94:3997–4010

    CAS  PubMed  Google Scholar 

  • Vanura K, Montpellier B, Le T, Spicuglia S, Navarro JM, Cabaud O, Roulland S, Vachez E, Prinz I, Ferrier P, Marculescu R, Jager U, Nadel B (2007) In vivo reinsertion of excised episomes by the V(D)J recombinase: a potential threat to genomic stability. PLoS Biol 5:e43. doi:10.1371/journal.pbio.0050043, 1544-9173-5-3-e43 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549, S1074-7613(00)80269-1 [pii]

    CAS  PubMed  Google Scholar 

  • Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080. doi:10.1158/0008-5472.CAN-07-3293, discussion 3080, 68/9/3077 [pii]

    CAS  PubMed  Google Scholar 

  • Welinder E, Mansson R, Mercer EM, Bryder D, Sigvardsson M, Murre C (2011) The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor. Proc Natl Acad Sci USA 108:17402–17407. doi:10.1073/pnas.1111766108, 1111766108 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welzel N, Le T, Marculescu R, Mitterbauer G, Chott A, Pott C, Kneba M, Du MQ, Kusec R, Drach J, Raderer M, Mannhalter C, Lechner K, Nadel B, Jaeger U (2001) Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res 61:1629–1636

    CAS  PubMed  Google Scholar 

  • Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20:2009–2017

    CAS  PubMed  Google Scholar 

  • Xu CR, Feeney AJ (2009) The epigenetic profile of Ig genes is dynamically regulated during B cell differentiation and is modulated by pre-B cell receptor signaling. J Immunol 182:1362–1369, 182/3/1362 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Davidson L, Alt FW, Baltimore D (1996) Deletion of the Ig kappa light chain intronic enhancer/matrix attachment region impairs but does not abolish V kappa J kappa rearrangement. Immunity 4:377–385

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Alt FW (1985) Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40:271–281

    CAS  PubMed  Google Scholar 

  • Ye SK, Agata Y, Lee HC, Kurooka H, Kitamura T, Shimizu A, Honjo T, Ikuta K (2001) The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15:813–823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by an EPSRC studentship (to CMK) a Lady Tata Memorial Trust studentship (to JNS), a MRC grant G0801101 (to JB) and the BBSRC (SB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Bevington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirkham, C.M., Scott, J.N., Boyes, J., Bevington, S. (2014). The Molecular Basis of B Cell Development and the Role of Deregulated Transcription and Epigenetics in Leukaemia and Lymphoma. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_13

Download citation

Publish with us

Policies and ethics