Skip to main content

Treatment of Persons with CRS

  • Chapter
  • First Online:
Chronic Radiation Syndrome

Abstract

This chapter covers the basic principles of treatment of CRS, which were applied earlier for treating persons with CRS, and the prospects for the pathogenetic therapy of CRS. Although cases of CRS were registered more than 50 years ago, an analysis of the efficacy of the treatment is of considerable interest not only from a historical viewpoint. It is important to note that both the principles of treatment of persons with CRS and the symptomatic therapy still remain relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thesan formerly was used as a stimulant of leukopoiesis. Antianemin – aqueous extract of bovine liver which was used for the treatment of anemia (Mashkovsky 1958).

  2. 2.

    Lipocerebrin – a preparation of the brain of bovine cattle containing brain phospholipids.

  3. 3.

    Phosphren – medicine containing organic phosphorus, lecithin, iron, and calcium salts.

  4. 4.

    Phytin – a complex organic preparation of phosphorous, which was used for the treatment of various diseases.

References

  • Akleyev AV, Silkina LA, Kozheurov VP, Fomin VA (1995) The effect of the food additive Medetopekt on the health status of individuals chronically exposed to radiation. Ecol Issues South Urals 1:13–20 [Ekologicheskiye Problemy na Yuzhnom Urale, 1, 13–20 (Russian)]

    Google Scholar 

  • Akleyev AV, Gritsenko VP, Marchenko TA (2008) Socio-psychological consequences of the accidental radiation exposure of the population in the Southern Urals. RADEKON, Moscow (Russian)

    Google Scholar 

  • Alexeyeva OG, Vyalova NA, Grebneva AA et al (1963) Dynamic observation of health status in individuals exposed to uranium fission products. Radiat Med Bull 1а:47–52 [Bull Radiat Med 1а, 47–52 (Russian)]

    Google Scholar 

  • Andrushchenko VN, Ivanov AA, Maltsev VN (1996) Radioprotective effect of substances of microbial origin. Radiatsionnaya Biologiya Radioecologiya 36:195–208 (Russian)

    CAS  Google Scholar 

  • Baysogolov GD (1961) Clinical picture of chronic radiation disease at different stages of treatment. Institut Biofiziki, Moscow, p 336 (Russian)

    Google Scholar 

  • Beyzadeoglu M, Balkan M, Demiriz M et al (1997) Protective effect of vitamin A on acute radiation injury in the small intestine. Radiat Med 15:1–5 (Russian)

    CAS  PubMed  Google Scholar 

  • Blomstrand C, Johansson B, Rosengren B (1975) Dexamethasone effect on blood-brain barrier damage caused by acute hypertension in x-irradiated rabbits. Acta Neurol Scand 52:331–334

    Article  CAS  PubMed  Google Scholar 

  • Bolotin E, Smogorzewska M, Smith S et al (1996) Enhancement of thymopoiesis after BM transplant by in vivo interleukin-7. Blood 88:1887–1894

    CAS  PubMed  Google Scholar 

  • Bonsack ME, Felemovicius I, Baptista ML et al (1999) Radioprotection of the intestinal mucosa of rats by probucol. Radiat Res 151:69–73

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    CAS  PubMed  Google Scholar 

  • Burdelya LG, Krivokrysenko VI, Tallant TC et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Chertkov KS (2004) Remedies used at early stages of treatment of acute radiation disease. Radiat Med 4:728–739 (Russian)

    Google Scholar 

  • Delattre JY, Rosenblum MK, Thaler HT et al (1988) A model of radiation myelopathy in the rat. Pathology, regional capillary permeability changes and treatment with dexamethasone. Brain 111(6):1319–1336

    Article  PubMed  Google Scholar 

  • Doshchenko VN (1960) On the issue of the secretory, motor and hemopoietic function of the stomach in patients with chronic radiation disease. Bull Radiat Med 1a:57–85 (Russian)

    Google Scholar 

  • Duan HF, Wu CT, Wu DL et al (2003) Treatment of myocardial ischemia with BM-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8:467–474

    Article  CAS  PubMed  Google Scholar 

  • Fliedner TM, Graessle D, Paulsen C et al (2002) Structure and function of BM hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 17:405–426

    Article  CAS  PubMed  Google Scholar 

  • Fry TJ, Sinha M, Milliron M et al (2004) Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104:2794–2800

    Article  CAS  PubMed  Google Scholar 

  • Geraci JP, Mariano MS, Jackson KL (1993) Amelioration of radiation nephropathy in rats by dexamethasone treatment after irradiation. Radiat Res 134:86–93

    Article  CAS  PubMed  Google Scholar 

  • Giambarresi LI, Walker RI (1989) Prospects for radioprotection. Medical consequences of nuclear warfare 1:245–273

    Google Scholar 

  • Glazunov IS, Blagoveshchenskaya VV, Vergilesova OS et al (1959) On the issue of functional impairment of the nervous system in radiation disease. Bull Radiat Med 1a:3–15 (Russian)

    Google Scholar 

  • Gray DH, Seach N, Ueno T et al (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785

    Article  CAS  PubMed  Google Scholar 

  • Guskova AK, Baysogolov GD (1971) Radiation disease in man. Meditsina, Moscow (Russian)

    Google Scholar 

  • Hall JE, Martin KA, Whitney HA et al (1994) Potential for fertility with replacement of hypothalamic gonadotropin-releasing hormone in long term female survivors of cranial tumors. J Clin Endocrinol Metab 79:1166–1172

    CAS  PubMed  Google Scholar 

  • Hauer-Jensen M, Fink LM, Wang J (2004) Radiation injury and the protein C pathway. Crit Care Med 32:325–330

    Article  Google Scholar 

  • Hopewell JW, Van den Aardweg GJ, Morris GM et al (1994) Unsaturated lipids as modulators of radiation damage in normal tissues. In: Horrobin DF (ed) New approaches to cancer treatment. Churchill Communications, Europe, London, pp 99–106

    Google Scholar 

  • Hornsey S, Myers R, Jenkinson T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18:1437–1442

    Article  CAS  PubMed  Google Scholar 

  • ICRP (2012) Early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41(1–2):304, ICRP Publication 118, Elsevier Ltd

    Google Scholar 

  • Ina Y, Tanooka H, Yamada T et al (2005) Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res 163:153–158

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VA (1968) The results medical follow-up of persons resident in raions contaminated with fission products. Doctoral thesis, Institut Biofiziki, Moscow, p 544 (Russian)

    Google Scholar 

  • Ivanov VA (1971) The results of medical follow-up of persons resident in localities contaminated with uranium fission products. Bull Radiat Med 2:12–20 (Russian)

    Google Scholar 

  • Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaushansky K (2006) Lineage-specific hematopoietic growth factors. N Engl J Med 354:2034–2045

    Article  CAS  PubMed  Google Scholar 

  • Kenins L, Gill JW, Boyd RL et al (2008) Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J Exp Med 205:523–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knox SJ, Fowler S, Marquez C et al (1994) Effect of filgrastim (G-CSF) in Hodgkin's disease patients treated with radiation therapy. Int J Radiat Oncol Biol Phys 28:445–450

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Ishida H, Takahashi M et al (2002) Elevation of glutathione induced by low-dose gamma rays and its involvement in increased natural killer activity. Radiat Res 157:275–280

    Article  CAS  PubMed  Google Scholar 

  • Kumar KS, Srinivasan V, Toles R et al (2002) Nutritional approaches to radioprotection: Vitamin E. Mil Med 167:57–59

    PubMed  Google Scholar 

  • Kurshakov NA (1956) Chronic radiation sickness. Bull Radiat Med 4:3–20 (Russian)

    Google Scholar 

  • Liu H, Xiong M, Xia YF et al (2009) Studies on pentoxifylline and tocopherol combination for radiation-induced heart disease in rats. Int J Radiat Oncol Biol Phys 73:1552–1559

    Article  CAS  PubMed  Google Scholar 

  • MacVittie TJ, Farese AM, Jackson W 3rd (2005) Defining the full therapeutic potential of recombinant growth factors in the post radiation-accident environment: the effect of supportive care plus administration of G-CSF. Health Phys 89:546–555

    Article  CAS  PubMed  Google Scholar 

  • Mashkovsky MD (1958) Medicinal agents (Reference book for physicians). Moscow, Medgiz p 811

    Google Scholar 

  • Matsubara J, Turcanu V, Poindron P et al (2000) Immune effects of low-dose radiation: short-term induction of thymocyte apoptosis and long-term augmentation of T-cell-dependent immune responses. Radiat Res 153:332–338

    Article  CAS  PubMed  Google Scholar 

  • Meyn RE, Milas L, Ang KK (2009) The role of apoptosis in radiation oncology. Int J Radiat Biol 85:107–115

    Article  CAS  PubMed  Google Scholar 

  • Monobe M, Hino M, Sumi M et al (2005) Protective effects of melatonin on gamma-ray induced intestinal damage. Int J Radiat Biol 81:855–860

    Article  CAS  PubMed  Google Scholar 

  • Moulder JE, Robbins ME, Cohen EP et al (1998) Pharmacologic modification of radiation-induced late normal tissue injury. Cancer Treat Res 93:129–151

    Article  CAS  PubMed  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2007) Treatment of radiation nephropathy with ACE inhibitors and AII type–1 and type-2 receptor antagonists. Curr Pharm Des 13:1317–1325

    Article  CAS  PubMed  Google Scholar 

  • Mozdarani H, Ghoraeian P (2008) Modulation of gamma-ray-induced apoptosis in human peripheral blood leukocytes by famotidine and vitamin C. Mutat Res 649:71–78

    Article  CAS  PubMed  Google Scholar 

  • Okladnikova ND, Sumina MV et al (1992) Chronic radiation disease induced by external gamma-radiation in man, late period. Bull RAMSci 2:22–28 (Russian)

    Google Scholar 

  • Okladnikova ND, Pesternikova VS, Sumina MV, Doshchenko VN (1993) Radiation-related occupational diseases at the first atomic industry plant. Med Radiol 12:24–28 (Russian)

    Google Scholar 

  • Oliper TV (1960) Ostealgic syndrome in the clinic of chronic radiation disease. Bull Radiat Med 1a:73–80 (Russian)

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized BM cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patchen ML, MacVittie TJ, Jackson WE (1989) Postirradiation glucan administration enhances the radioprotective effects of WR–2721. Radiat Res 117:59–69

    Article  CAS  PubMed  Google Scholar 

  • Prasad KN (2005) Rationale for using multiple antioxidants in protecting humans against low doses of ionizing radiation. Br J Radiol 78:485–492

    Article  CAS  PubMed  Google Scholar 

  • Ramanan S, Kooshki M, Zhao W et al (2008) PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 45:1695–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezvani M, Birds DA, Hodges H et al (2001) Modification of radiation myelopathy by the transplantation of neural stem cells in the rat. Radiat Res 156:408–412

    Article  CAS  PubMed  Google Scholar 

  • Robbins ME, Payne V, Tommasi E et al (2009) The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 73:499–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi SW, Jeker LT, Ueno T et al (2007) Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109:3803–3811

    Article  CAS  PubMed  Google Scholar 

  • Shirazi A, Ghobadi G, Ghazi-Khansari M (2007) A radiobiological review on melatonin: a novel radioprotector. J Radiat Res (Tokyo) 48:263–272

    Article  CAS  Google Scholar 

  • Shoigu SK (ed) (2002) Consequences of the anthropogenic radiation exposure and issue of rehabilitation of the Urals region. Infolio-Print, Moscow (Russian)

    Google Scholar 

  • Soule BP, Hyodo F, Matsumoto K et al (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42:1632–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Springer IN, Niehoff P, Acil Y et al (2008) BMP-2 and bFGF in an irradiated bone model. J Craniomaxillofac Surg 36:210–217

    Article  PubMed  Google Scholar 

  • Tada E, Matsumoto K, Kinoshita K et al (1997) The protective effect of dexamethasone against radiation damage induced by interstitial irradiation in normal monkey brain. Neurosurgery 41:209–217

    Article  CAS  PubMed  Google Scholar 

  • UNSCEAR (2009) Effects of ionizing radiation on the immune system. United Nations Scientific Committee on the Effects of Atomic Radiation 2006 Report to the General Assembly, with scientific annexes. UN Publication Sales No. E.09.IX.5. United Nations, New York, USA

    Google Scholar 

  • Ward WF, Kim YT, Molteni A et al (1988) Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys 15:135–140

    Article  CAS  PubMed  Google Scholar 

  • Ward WF, Molteni A, Ts'ao CH et al (1992) Radiation pneumotoxicity in rats: modification by inhibitors of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys 22:623–625

    Article  CAS  PubMed  Google Scholar 

  • Waselenko JK, MacVittie TJ, Blakely WF et al (2004) Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140:1037–1051

    Article  PubMed  Google Scholar 

  • Wouters KA, Kremer LC, Miller TL et al (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561–578

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Payne V, Tommasi E et al (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 67:6–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akleyev, A.V. (2014). Treatment of Persons with CRS. In: Chronic Radiation Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45117-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45117-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45116-4

  • Online ISBN: 978-3-642-45117-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics