Skip to main content

Dynamics of Hematopoietic Changes in Persons with CRS

  • Chapter
  • First Online:
Chronic Radiation Syndrome

Abstract

This section more thoroughly elaborates the dynamics of changes in the hematopoietic system which was critical in residents of the Techa riverside villages both as a result of the highest exposure doses due to 90Sr and also because of the high radiosensitivity of HSC (HSC). It is known that hematopoietic system maintains constant cell number in the peripheral blood and immune homeostasis. The major clinical changes in the period of CRS formation were cytopenia (neutropenia, thrombocytopenia, and less frequently lymphopenia), and changes in the RBM (delays in the maturation of the granulocytes at the stage of myelocyte, accelerated maturation and increased proliferation of erythrokaryocytes, etc.). A high level of lethal aberrations (chromosomal bridges, fragmentosis of the nucleus, etc.) and abnormal mitoses (chromosome clumping) were registered in the RBM cells. The dynamics of hematological disorders is determined by the dose rate to RBM. The extent and duration of the hematopoiesis recovery depend on the degree of CRS severity. In mild CRS cases there may occur a gradual spontaneous recovery of the hematopoiesis. In the majority of such patients in six to ten years after the onset of the exposure the number of neutrophils, thrombocytes and lymphocytes normalized .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akleyev AV, Kisselyov MF (eds) (2001) Medical-biological and ecological impacts of radioactive contamination of the Techa River. Ministry of Health of the Russian Federation, Moscow (Russian)

    Google Scholar 

  • Akleyev AV, Varfolomeyeva TA (2007a) The state of hematopoiesis under long-term radiation exposure of BM in residents of the Techa riverside villages. Radiat Biol Radioekol 47(3):307–321 (Russian)

    Google Scholar 

  • Akleyev AV, Varfolomeyeva TA (2007b) Dynamics of blood cell composition in residents of the Techa riverside villages. Acta Med Nagasaki 52:19–28

    Google Scholar 

  • Akleyev AV, Kossenko MM, Silkina LA et al (1995a) Health effects of radiation incidents in the Southern Urals. Stem Cells 13(1):58–68

    PubMed  Google Scholar 

  • Akleyev AV, Kossenko MM, Silkina LA, Degteva ÐœO (1995b) Clinical-epidemiological basis for the formation of elevated cancer risk groups among the exposed population. Radiat Risk 5:163–175 (Russian)

    Google Scholar 

  • Akleyev AV, Veremeyeva GA, Silkina LA et al (1996) Long-term hematopoiesis and immunity status after chronic radiation exposure in red BM in humans. Cent Eur J Occup Environ Med 52(2):113–129

    Google Scholar 

  • Akleyev AV, Veremeyeva GA, Kiozumi S (1998) The effect of chronic radiation exposure on the level of somatic mutations in the peripheral blood cells in people in late periods. Radiat Biol Radioekol 38(4):573–585 (Russian)

    Google Scholar 

  • Armed Forces Radiobiology Research Institute (AFRRI) (1998) Chronic radiation sickness among Techa Riverside residents, AFRRI Contract Report 98–1. Urals Research Center for Radiation Medicine, Chelyabinsk (Russian)

    Google Scholar 

  • Brown JM, Wouters BG (1999) Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59:1391–1399

    CAS  PubMed  Google Scholar 

  • Campana D, Coustant-Smith E, Janossy G (1988) Double and triple staining methods for studying the proliferation activity of human B and T lymphoid cells. Immunol Methods 107:79–88

    Article  CAS  Google Scholar 

  • Combadère B, Blanc C, Li T, Carcelain G, Delaugerre C, Calvez V, Tubiana R, Debré P, Katlama C, Autran B (2000) CD4+Ki67+ lymphocytes in HIV-infected patients are effector T cells accumulated in the G1 phase of the cell cycle. Immunology 30(12):598–603

    Google Scholar 

  • Cordone I, Matutes E, Catovsky D (1992) Characterization of normal peripheral blood cells in cycle identified by monoclonal antibody Ki-67. Clin Pathol 45:201–205

    Article  CAS  Google Scholar 

  • Edinger AE, Thompson CB (2004) Death by design: apoptosis, necrosis find autophagy. Curr Opin Cell Biol 16:663–669

    Article  CAS  PubMed  Google Scholar 

  • Fliedner TM, Bond VP, Cronkite EP (1961) Structural, cytologic and autoradiographic (H3-thymidine) changes in the BM following total body irradiation. Am J Pathol 38(5):599–623

    CAS  PubMed  Google Scholar 

  • Gotlib VY, Pelevina II, Konoplya YF et al (1991) Biological effect of low dose ionizing radiation. Radiobiol 31(3):318–325 (Russian)

    Google Scholar 

  • Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854

    Article  CAS  PubMed  Google Scholar 

  • IAEA (2001) Cytogenetic analysis for radiation dose assessment: a manual, International Atomic Energy Agency Technical Reports Series No. 405. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ilyin LA (ed) (1985) Handbook on the organization of health care of persons affected by ionizing radiation. Energoatomizdat, Moscow (Russian)

    Google Scholar 

  • Kyoizumi S, Umeki S, Akiyama M et al (1992) Frequency of mutant T lymphocytes defective in the expression of the T-cell antigen receptor gene among radiation-exposed people. Mutat Res 265:173–180

    Article  CAS  PubMed  Google Scholar 

  • Lamm GM, Steinlein P, Cotton M, Christofori G (1997) A rapid, quantitative and inexpensive method for detecting apoptosis by flow cytometry in transiently transfected cells. Nucleic Acids Res 25(23):4855–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlois RG, Bigbee WL, Jensen RH (1986) Measurements of the frequency of human erythrocytes with gene expression loss phenotypes at the glycophorin A locus. Hum Genet 74:353–362

    Article  CAS  PubMed  Google Scholar 

  • Levitskaya AB, Nikityuk DB (2005) Modern approaches to the detection of apoptosis. Vest Nov Med Tekh 12(3–4):33 (Russian)

    Google Scholar 

  • Little JB (1998) Radiation-induced genomic instability. Radiat Biol 74(6):663–671

    Article  CAS  Google Scholar 

  • Little JB (2003) Genomic instability and radiation. J Radiat Prot 23:173–181

    Article  CAS  Google Scholar 

  • Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell Z (1995) Molecular cell biology. Scientific American Books Ink, New York

    Google Scholar 

  • Lucas JN, Awa A, Straume T, Poggensee M, Kodama Y, Nakano M, Ohtaki K, Weier HU, Pinkel D, Gray T, Littlefield G (1992) Rapid translocation frequency analysis in human decades after exposure to ionizing radiation. Int J Radiat Biol 62(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Menshchikov VV (ed) (1987) Laboratory research methods in clinic. Meditsina, Moscow (Russian)

    Google Scholar 

  • Mitra BG (1996) Detection of apoptotic cells using the apoptosis detection system, fluorescein. Promega Notes Magazine 57:10

    Google Scholar 

  • Moretti L, Cha YI, Niermann KJ, Lu B (2007) Perspective: switch between apoptosis and autophagy radiation-induced endoplasmic reticulum stress? Cell Cycle 6–7:793–798

    Article  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    Article  CAS  PubMed  Google Scholar 

  • Pelevina II, Gotlib VY, Kudriashova OV et al (1996) Genomic instability after exposure to radiation at low doses (in the 10-kilometer zone of the accident at the Chernobyl Atomic Electric Power Station and under laboratory conditions). Radiat Biol Radioekol 36(4):546–560 (Russian)

    CAS  Google Scholar 

  • Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova LG, Kost YA (eds) (1960) Handbook of clinical and laboratory investigations. Medgiz, Moscow (Russian)

    Google Scholar 

  • Sokolov VV, Gribova IA (1972) Hematological parameters of a healthy person. Meditsina, Moscow (Russian)

    Google Scholar 

  • Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243:167–190

    Article  CAS  PubMed  Google Scholar 

  • Vorobyov AI (ed) (1985) Handbook on hematology, vol 1. Meditsina, Moscow (Russian)

    Google Scholar 

  • Vozilova AV, Akleyev AV, Bochkov NP, Katossova LD (1998) Late cytogenetic effects of the chronic exposure of the population of the Southern Urals. Radiat Biol Radioekol 38(4):586–592 (Russian)

    CAS  Google Scholar 

  • Wilkins RC, Kutzner BC, Truong M, Sanchez-Dardon J, McLean JRN (2002) Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using annexin V and propidium iodide versus the neutral comet assay. Cytometry 48:14–19

    Article  CAS  PubMed  Google Scholar 

  • Yegorov AP, Bochkaryov VV (1954) Hematopoiesis and ionizing radiation. Gosudarstvennoye izdatelstvo meditsinskoy literatury, Moscow (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akleyev, A.V. (2014). Dynamics of Hematopoietic Changes in Persons with CRS. In: Chronic Radiation Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45117-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45117-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45116-4

  • Online ISBN: 978-3-642-45117-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics