Skip to main content

Mechanisms Involved in Chronic Radiation Exposure Effects: Pathogenesis of Chronic Radiation Syndrome

  • Chapter
  • First Online:
Chronic Radiation Syndrome

Abstract

Chronic radiation syndrome is considered to be a system response of a human body as a unified whole to chronic radiation exposure. Human body is not a simple set of organs, and its response to total body exposure is not a sum of responses manifested by individual organs. Organs are functionally interconnected due to, first of all, the regulatory systems (nervous, endocrine, and immuno-hematopoietic), and this maintains the homeostasis. At the initial stage, CRS is a typical “disadaptive” pathology characterized by non-specific functional disorders of hematopoiesis, nervous system and internal organs. At the basis of such changes there are radiation-induced impairments in the regulatory systems. Visceral disturbances are secondary in nature, and they are reversible. If the exposure dose for certain organs exceeds the threshold values, then, not only functional, but also organic changes develop (vascular impairments, dystrophy, fibrosis, RBM hypoplasia, etc.), and the CRS course acquires an irreversible character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MJ, Lipshultz SE (2005) Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer 44:600–606

    Article  PubMed  Google Scholar 

  • Agha A, Sherlock M, Brennan S et al (2005) Hypothalamic-pituitary dysfunction after irradiation of nonpituitary brain tumors in adults. J Clin Endocrinol Metab 90:6355–6360

    Article  CAS  PubMed  Google Scholar 

  • Ahmed KM, Li JJ (2008) NF-kB-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 44:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed KM, Fan M, Nantajit D et al (2008) Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene 27(53):6738–6748

    Article  CAS  PubMed  Google Scholar 

  • Akleyev AV (2009) Tissue reactions under chronic exposure to ionizing radiation. Radiats Biol Radioekol 49(1):5–20 (Russian)

    Google Scholar 

  • Akleyev AV, Kisselyov MF (eds) (2002) Medical-biological and ecological impacts of radioactive contamination of the Techa river. FREGAT, Chelyabinsk (Russian)

    Google Scholar 

  • Akleyev AV, Kossenko MM (1991) Summary of the results of long-term immunity studies for the exposed population. Immunologiya 3:4–7 (Russian)

    Google Scholar 

  • Akleyev AV, Varfolomeyeva TA (2007) The state of hemopoiesis under long-term radiation exposure of BM in residents of the Techa riverside villages. Radiats Biol Radioekol 47:307–321 (Russian)

    Google Scholar 

  • Akleyev AV, Kossenko MM, Silkina LA, Degteva MO (1995) Clinical-epidemiological basis for the formation of elevated cancer risk groups among the exposed population. Radiat Risk 5:163–175 (Russian)

    Google Scholar 

  • Akleyev AV, Veremeyeva GA, Silkina LA et al (1999) Long-term haemopoiesis and immunity status after chronic radiation exposure of red BM in humans. Cent Eur J Occup Environ Med 5:113–129

    Google Scholar 

  • Akleyev AV, Aleschenko AV, Gotlib VJ et al (2004) Adaptive capacities of lymphocytes in Techa riverside residents chronically exposed to radiation. Jpn J Health Phys 39(4):375–381

    Article  CAS  Google Scholar 

  • Aleman BM, Van den Belt-Dusebout AW, Klokman WJ et al (2003) Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol 21:3431–3439

    Article  PubMed  Google Scholar 

  • Anversa P, Leri A, Rota M et al (2007) Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells 25:589–601

    Article  CAS  PubMed  Google Scholar 

  • Asfandiiarova NS, Romadin AE, Kolcheva NG et al (1998) Immune system in residents of territories contaminated with radionuclides after Chernobyl accident. Ter Arkh 70:55–59

    CAS  PubMed  Google Scholar 

  • Attar M, Molaie Kondolousy Y, Khansari N (2007) Effect of high dose natural ionizing radiation on the immune system of the exposed residents of Ramsar Town, Iran. Iran J Allergy Asthma Immunol 6:73–78

    CAS  PubMed  Google Scholar 

  • Baraboy VA, Oleynik SA (1999) Stress in the development of radiation injury. The role of regulatory mechanisms. Radiats Biol Radioecol 39(4):438–443 (Russian)

    Google Scholar 

  • Barber RC, Hardwick RJ, Shanks ME et al (2009) The effects of in utero irradiation on mutation induction and transgenerational instability in mice. Mutat Res 664(1–2):6–12

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment – tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875

    Article  CAS  PubMed  Google Scholar 

  • Bauer G (2007) Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol 83(11–12):873–888

    Article  CAS  PubMed  Google Scholar 

  • Baysogolov GD (1961) Clinical picture of chronic radiation sickness during various periods of its treatment. Institut Biofiziki, Moscow (Russian)

    Google Scholar 

  • Bonner WM (2003) Low-dose radiation: thresholds, bystander effects, and adaptive responses. Proc Natl Acad Sci U S A 100(9):4973–4975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brougham MFH, Kelnar CJH, Wallace WHB (2002) The late endocrine effects of childhood cancer treatment. Pediatr Rehabil 5(4):191–201

    PubMed  Google Scholar 

  • Brown WR, Blair RM, Moody DM et al (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci 257:67–71

    Article  PubMed  Google Scholar 

  • Burdak-Rothkamm S, Short SC, Folkard M et al (2007) ATR-dependent radiation-induced gamma H2AX foci in bystander primary human astrocytes and glioma cells. Oncogene 26(7):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Bushmanov AY et al (2007) Reaction of the nervous system under chronic radiation exposure. In: Barabanova AV, Baranov AE, Bushmanov AY (eds) Chronic radiation sickness due to uniform irradiation. Slovo, Moscow, pp 154–168 (Russian)

    Google Scholar 

  • Centola GM, Keller JW, Henzler M et al (1994) Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl 15:608–613

    CAS  PubMed  Google Scholar 

  • Chang WP, Hwang JS, Hung MC et al (1999) Chronic low-dose gamma-radiation exposure and the alteration of the distribution of lymphocyte subpopulations in residents of radioactive buildings. Int J Radiat Biol 75:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Chen J (2004) Senescence and functional failure in HSC. Exp Hematol 32:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Chow BM, Li YQ, Wong CS (2000) Radiation-induced apoptosis in the adult central nervous system is p53-dependent. Cell Death Differ 7:712–720

    Article  CAS  PubMed  Google Scholar 

  • Cohen LE (2003) Endocrine late effects of cancer treatment. Curr Opin Pediatr 15:3–9

    Article  PubMed  Google Scholar 

  • Constine LS, Konski A, Ekholm S et al (1988) Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys 15:319–330

    Article  CAS  PubMed  Google Scholar 

  • Constine LS, Woolf PD, Cann D et al (1993) Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 328:87–94

    Article  CAS  PubMed  Google Scholar 

  • Courtade M, Caratero A, Jozan S et al (2001) Influence of continuous, very low-dose gamma-irradiation on the mouse immune system. Int J Radiat Biol 77:587–592

    Article  CAS  PubMed  Google Scholar 

  • Dedov VI, Norets TA (1981) Hypophysis-testes system under prolonged internal irradiation. Med Radiol 26:26–29 (Russian)

    CAS  Google Scholar 

  • Denham JW, Hauer-Jensen M, Peters LJ (2001) Is it time for a new formalism to categorize normal tissue radiation injury? Int J Radiat Oncol Biol Phys 50(5):1105–1106

    Article  CAS  PubMed  Google Scholar 

  • Doshchenko VN (1960) On the issue of the secretory, motor, and hematopoietic function of the stomach in persons with chronic radiation sickness. Bull Radiat Med 1a:57–65 (Russian)

    Google Scholar 

  • Doshchenko VN, Migunova NI (1985) Syndrome of myocardiodystrophy in late period of chronic radiation sickness and its outcomes. Bull Radiat Med 1:20–25 (Russian)

    Google Scholar 

  • Edwards E, Geng L, Tan J et al (2002) Phosphatidylinositol 3-kinase/Act signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 62:4671–4677

    CAS  PubMed  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Fajardo LF, Berthrong M, Anderson RE (2001) Radiation pathology. Oxford University Press, New York

    Google Scholar 

  • Fan M, Ahmed KM, Coleman MC et al (2007) Nuclear factor-kappa B and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Cancer Res 67(7):3220–3228

    Article  CAS  PubMed  Google Scholar 

  • Feinendegen LE, Bond VP, Sondhaus CA, Muehlensiepen H (1996) Radiation effects induced by low doses in complex tissue and their relation to cellular adaptive responses. Mutat Res 358:199–205

    Article  PubMed  Google Scholar 

  • Feinendegen LE, Pollcove M, Soundhaus CA (2004) Responses to low doses of ionizing radiation in biological systems. Nonlinearity Biol Toxicol Med 2:143–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fliedner TM, Graessle D, Paulsen C et al (2002) Structure and function of BM hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 17:405–426

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  CAS  PubMed  Google Scholar 

  • Gallini R, Hendry JH, Molineux G et al (1988) The effect of low dose rate on recovery of hemopoietic and stromal progenitor cells in gamma-irradiated mouse BM. Radiat Res 115:481–487

    Article  CAS  PubMed  Google Scholar 

  • Gaziyev AI (1999) DNA damage in cells under the exposure to ionizing radiation. Radiats Biol Radioecol 39(6):630–638 (Russian)

    Google Scholar 

  • Ghandhi SA, Yaghoubian B, Amundson SA (2008) Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: synchronous and differential responses. BMC Med Genomics 1(1):63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghiassi-nejad M, Zakeri F, Assaei RG et al (2004) Long-term immune and cytogenetic effects of high level natural radiation on Ramsar inhabitants in Iran. J Environ Radioact 74:107–116

    Article  CAS  PubMed  Google Scholar 

  • Gidali J (2002) Effects of protracted and chronic irradiation on the haemopoietic system in mouse. Br J Radiol 26:114–119

    Google Scholar 

  • Glazunov IS, Blagoveshchenskaya VV, Malakhova VV (1959) Major results of the scientific research in radiation neurology. Bulleten Radiatsionnoy Meditsiny 1а:3–15 (Russian)

    Google Scholar 

  • Gleeson HK, Shalet SM (2004) The impact of cancer therapy on the endocrine system in survivors of childhood brain tumours. Endocr Relat Cancer 11:589–602

    Article  CAS  PubMed  Google Scholar 

  • Godekmerdan A, Ozden M, Ayar A et al (2004) Diminished cellular and humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Arch Med Res 35:324–328

    Article  CAS  PubMed  Google Scholar 

  • Goodhead DG, O’Neill P, Menzel HG (eds) (1996) Microdosimetry: an interdisciplinary approach. In: Proceedings of the 12th symposium on Microdosimetry, Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Gorizontov PD, Belousova OI, Fedotova MI (1983) Stress and the blood system. Meditsina, Moscow (Russian)

    Google Scholar 

  • Grebenyuk AN (2002) Status of neutrophils under radiation exposure. The author’s published abstract of the dissertation, Saint Petersburg (Russian)

    Google Scholar 

  • Grigoryev YG, Popov VI, Shifirkin AV et al (1986) Somatic effects of chronic gamma irradiation. Energoatomizdat, Moscow (Russian)

    Google Scholar 

  • Guidos C (2006) Thymus and T-lymphocyte development: what is new in the 21st century? Immunol Rev 209:5–9

    Article  PubMed  Google Scholar 

  • Guskova AK, Baysogolov GD (1971) Radiation sickness in man. Meditsina, Moscow (Russian)

    Google Scholar 

  • Guskova AK, Kiryushkin VI, Savostin VA (1976) The dynamics of the nervous system changes in persons who were exposed to uranium fission products in childhood. Bulleten Radiatsionnoy Meditsiny 1:3–8 (Russian)

    Google Scholar 

  • Guskova AK, Gusev LA, Okladnikova ND (2002) Russian concept of chronic radiation disease in man. Br J Radiol 26:19–23

    Google Scholar 

  • Hafer K, Iwamoto KS, Scuric Z et al (2007) Adaptive response to gamma radiation in mammalian cells proficient and deficient in components of nucleotide excision repair. Radiat Res 168(2):168–174

    Article  CAS  PubMed  Google Scholar 

  • Hall P, Adami HO, Trichopoulos D et al (2004) Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. Br Med J 328:19

    Article  Google Scholar 

  • Han W, Wu L, Chen S et al (2007) Constitutive nitric oxide acting as a possible intercellular signaling molecule in the initiation of radiation-induced DNA double strand breaks in non-irradiated bystander cells. Oncogene 26(16):2330–2339

    Article  CAS  PubMed  Google Scholar 

  • Hanoux V, Pairault C, Bakalska M et al (2007) Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ 14:671–681

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Kusunoki Y, Hakoda M et al (2003) Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int J Radiat Biol 79:129–136

    Article  CAS  PubMed  Google Scholar 

  • Herter LD, Golendziner E, Flores JA et al (2002) Ovarian and uterine sonography in healthy girls between 1 and 13 years old: correlation of findings with age and pubertal status. AJR Am J Roentgenol 178(6):1531–1536

    Article  PubMed  Google Scholar 

  • Hopewell JW, Van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 33:265–275

    Article  CAS  PubMed  Google Scholar 

  • Hyashi T, Morishita Y, Kubo Y et al (2005) Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors. Am J Med 118(1):83–86

    Article  Google Scholar 

  • ICRP (1987) The 1987 Recommendations of the International Commission on Radiological Protection. ICRP Publication 41, 42. Energoatomizdat, Moscow (Russian)

    Google Scholar 

  • ICRP (2000) Avoidance of radiation Injuries from medical interventional procedures. ICRP publication 85. Ann ICRP 30(2):7–67

    Google Scholar 

  • ICRP (2002) Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 32(3–4):5–265. International Commission on Radiological Protection. Pergamon Press, Oxford

    Google Scholar 

  • ICRP (2003) Relative biological effectiveness (RBE), quality factor (Q) and radiation weighting factor (wR). ICRP Publication 92. Ann ICRP 33(4)

    Google Scholar 

  • ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Pblication 99. Ann ICRP 35(4)

    Google Scholar 

  • ICRP (2006) Human alimentary tract model for radiological protection. ICRP Publication 100. Ann ICRP 36(1–2):25–327, iii. International Commission on Radiological Protection. Elsevier Ltd.

    Google Scholar 

  • ICRP (2007) Annals of the ICRP. ICRP Publication 103. International Commission on Radiological Protection. Elsevier Ltd

    Google Scholar 

  • ICRP (2008) Recommendations of the ICRP, 1st edn. ICRP publication 103. Ann ICRP 37(2–4):313. Elsevier

    Google Scholar 

  • ICRP (2012) Early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann ICRP 41(1–2). Elsevier Ltd

    Google Scholar 

  • Ikushima T, Aritomi H, Morisita J (1996) Radioadaptive response: efficient repair of radiation-induced DNA damage in adapted cells. Mutat Res 358:193–198

    Article  PubMed  Google Scholar 

  • Ilnytskyy Y, Koturbash I, Kovalchuk O (2009) Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen 50(2):105–113

    Article  CAS  PubMed  Google Scholar 

  • Ilyin LA (ed) (1985) Handbook on the organization of health care of persons affected by ionizing radiation. Energoatomizdat, Moscow (Russian)

    Google Scholar 

  • Ilyin LA (ed) (2001) Radiatsionnaya meditsina. IzdAT, Moscow, p 432 (Russian)

    Google Scholar 

  • Ilyukhin AV, Shashkov VS, Burkovskaya TE, Zubenkova ES (1982) Cytokinetics and morphology of the hematopoiesis under chronic exposure. Energoatomizdat, Moscow (Russian)

    Google Scholar 

  • Ivanov VA (1971) The results of the follow-up of persons affected by the uranium fission products. Bulleten Radiatsionnoy Meditsiny 2:12–20 (Russian)

    Google Scholar 

  • Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116:1218–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iyer R, Lehnert BE, Iyer R, Lehnert BE (2002) Low dose, low-LET ionizing radiation-induced radioadaptation and associated early responses in unirradiated cells. Mutat Res 503(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AJ, Maniscalco WM, Parkhurst AB et al (1986) In vivo and in vitro demonstration of reduced myelin synthesis following early postnatal exposure to ionizing radiation in the rat. Radiat Res 105(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Jaenke RS, Angleton GM (1990) Perinatal radiation-induced renal damage in the beagle. Radiat Res 122:58–65

    Article  CAS  PubMed  Google Scholar 

  • Jereczek-Fossa BA, Alterio D, Jassem J et al (2004) Radiotherapy-induced thyroid disorders. Cancer Treat Rev 30:369–384

    Article  CAS  PubMed  Google Scholar 

  • Joiner MC, Lambin P, Malaise EP, Robson T, Arrand JE, Skov KA, Marples B (1996) Hypersensitivity to very-low single radiation doses: its relationship to the adaptive response and induced radioresistence. Mutat Res 358:171–183

    Article  PubMed  Google Scholar 

  • Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Kabasheva NY, Doshchenko VN (1971) The status of the stomach in patients with chronic radiation sickness based on dynamic observation. Bulleten Radiatsionnoy Meditsiny 1:45–49 (Russian)

    Google Scholar 

  • Kadhim MA, Moore SR, Goodwin EH (2004) Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat Res 568(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Kaspar LV, Seed TM (1984) CFU-GM colony-enhancing activity in sera of dogs under acute and chronic gamma-irradiation regimens. Acta Haematol 71:189–197

    Article  CAS  PubMed  Google Scholar 

  • Kinsella TJ, Sindelar WF, DeLuca AM et al (1988) Tolerance of the canine bladder to intraoperative radiation therapy: an experimental study. Int J Radiat Oncol Biol Phys 14:939–946

    Article  CAS  PubMed  Google Scholar 

  • Kirillova EN (1985) Normal killer function in CBA mice as affected by long-term intake of tritium oxide. Radiobiologiia 25:792–795 (Russian)

    CAS  PubMed  Google Scholar 

  • Kirillova EN (1990) Immunity indices of mice after long-term intake of tritium oxide or γ-exposure. Radiobiologiya 30(2):175–178 (Russian)

    CAS  Google Scholar 

  • Kirillova EN, Muksinova KN (1981) Immune reactions in mice after long-term radiation exposure. Radiobiologiya 21(1):91–96 (Russian)

    CAS  Google Scholar 

  • Kirillova EN, Manko VM, Muksinova KN (1986) Recovery of humoral immunity indices of mice after long-term intake of tritium oxide. Immunologiya 2:38–41 (Russian)

    Google Scholar 

  • Kirillova EN, Muksinova KN, Skukovskaia TL (1988) Effect of prolonged continuous external irradiation on humoral immunity indices of mice. Kosm Biol Aviakosm Med 22:62–65

    CAS  PubMed  Google Scholar 

  • Kirillova EN, Murzina LD, Muksinova KN (1989) Cellular basis of immunodeficiency in late period after the radiation exposure. Immunologiya 1:32–34 (Russian)

    Google Scholar 

  • Kirillova EN, Revina VS, Sokolova SN (1991) Impairment of immunity and long-term effects of 239Pu in rats. Radiobiologiia 31:357–360 (Russian)

    CAS  PubMed  Google Scholar 

  • Kirsch DG, Santiago PM, di Tomasso E et al (2010) p53 сontrols radiation- induced gastrointestinal syndrome in mice independent of apoptosis. Science 327:593–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klammer H, Kadhim MA, Iliakis G (2010) Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Res 70(21):8498–8506

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Ischida Y, Tarahashi M, Yamaoka R (2002) Elevation of glutathione induced by low-dose gamma rays and its involvement in increased natural killer activity. Radiat Res 157(3):275–280

    Article  CAS  PubMed  Google Scholar 

  • Kolomiytseva IK, Kulagina TP, Markevich LN et al (2002) Nonmonotonous metabolic response of mammalian cells and tissues to ionizing radiation. Biofizika 47(6):1106–1115 (Russian)

    CAS  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  CAS  PubMed  Google Scholar 

  • Koturbash I, Rugo RE, Hendricks CA et al (2006) Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25(31):4267–4275

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk O, Burke P, Besplug J et al (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548(1–2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Kryzhanovskiy GN (2002) Disregulatory pathology. Meditsina, Moscow (Russian)

    Google Scholar 

  • Kudryashov YB (2001) Basic principles of radiobiology. Radiats Biol Radioecol 41:531–547 (Russian)

    Google Scholar 

  • Kudryashov YB (2008) Radiation biophysics (ionizing radiation). Nova Science Publishers Inc., New York

    Google Scholar 

  • Kurshakov NA, Kirillov SA (1967) Chronic radiation sickness as the consequence of external exposure. Bulleten Radiatsionnoy Meditsiny 3:3–12

    Google Scholar 

  • Kurshakov NA, Rynkova NN, Sokolova II et al (1962) Some data on the status of pituitary adrenal system of man in acute and chronic radiation sickness. Bulleten Radiatsionnoy Meditsiny 2a:3–6 (Russian)

    Google Scholar 

  • Kusunoki Y, Kyoizumi S, Hirai Y et al (1998) Flow cytometry measurements of subsets of T, B and NK cells in peripheral blood lymphocytes of atomic bomb survivors. Radiat Res 150(2):227–236

    Article  CAS  PubMed  Google Scholar 

  • Kusunoki Y, Kyoizumi S, Kubo Y et al (2001) Possible role of natural killer cells in negative selection of mutant lymphocytes that fail to express the human leukocyte antigen-A2 allele. Mutat Res 476(1–2):123132

    Google Scholar 

  • Kuzin AM (1995) Ideas of radiation hormesis in the atomic century. Nauka, Moscow (Russian)

    Google Scholar 

  • Lacoste-Collin L, Jozan S, Cances-Lauwers V et al (2007) Effect of continuous irradiation with a very low dose of gamma rays on life span and the immune system in SJL mice prone to B-cell lymphoma. Radiat Res 168:725–732

    Article  CAS  PubMed  Google Scholar 

  • Ladi E, Yin X, Chtanova T et al (2006) Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7:338–343

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Chen P, Haimovitz-Friedman A et al (2003) Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res 63:5950–5956

    CAS  PubMed  Google Scholar 

  • Li YQ, Chen P, Jain V et al (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161:143–152

    Article  CAS  PubMed  Google Scholar 

  • Liao YP, Wang CC, Butterfield LH et al (2004) Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173(4):2462–2469

    CAS  PubMed  Google Scholar 

  • Little DB (2007) Non-targeted effects of ionizing radiation: conclusions on low dose-rate effects. Radiats Biol Radioecol 47(3):262–272 (Russian)

    CAS  PubMed  Google Scholar 

  • Liu XD, Ma SM, Liu SZ (2003) Effects of 0.075 Gy x-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol 48:2041–2049

    Article  CAS  PubMed  Google Scholar 

  • Livesey EA, Brook CG (1990) Thyroid dysfunction after radiotherapy and chemotherapy of brain tumours. Arch Dis Child 64:593–595

    Article  Google Scholar 

  • Lyaginskaya AM, Osipov VA (2005) Combined effect of radiation and iodine deficit on pregnancy and fetus. Gyg Sanit 2:27–32 (Russian)

    Google Scholar 

  • Malyutina YV, Kabakov AY (2007) Heat shock protein induction prior to irradiation increases cellular radioresistance. Radiats Biol Radioecol 47(3):273–279 (Russian)

    CAS  Google Scholar 

  • Malyzhev VA, Pelevina II, Afanasev GG et al (1993) Immune system status under effect of low levels of ionizing radiation: studies within the 10 kilometer zone of accident at Chernobyl nuclear plant. Radiats Biol Radioekol 33:470–478 (Russian)

    CAS  Google Scholar 

  • Manda K, Ueno M, Moritake T et al (2007) Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid. Behav Brain Res 177:7–14

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Martin S, Viret R et al (2001) Low dose of the gamma acute radiation syndrome (1.5 Gy) does not significantly alter either cognitive behavior or dopaminergic and serotoninergic metabolism. Cell Mol Biol (Noisy-le-grand) 47:459–465

    CAS  Google Scholar 

  • Maxwell CA, Fleisch MC, Costes SV et al (2008) Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res 68(20):8304–8311

    Article  CAS  PubMed  Google Scholar 

  • Mazurik VK, Mikhaylov VF (2001) Radiation-induced genome instability: phenomenon, molecular mechanisms, pathogenetic significance. Radiats Biol Radioecol 41(3):272–289 (Russian)

    CAS  PubMed  Google Scholar 

  • Meijer AE, Saeidi AB, Zelenskaya A et al (1999) Influence of dose-rate, post-irradiation incubation time and growth factors on interphase cell death by apoptosis and clonogenic survival of human peripheral lymphocytes. Int J Radiat Biol 75(10):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Michalowski A (1981) Effects of radiation on normal tissues: hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat Environ Biophys 19(3):157–172

    Article  CAS  PubMed  Google Scholar 

  • Michalowski A (1986) The pathogenesis of the late side-effects of radiotherapy. Clin Radiol 37:203–207

    Article  CAS  PubMed  Google Scholar 

  • Molineux G, Testa NG, Hendry JH et al (1987) The radiation sensitivity of the haemopoietic microenvironment – effect of dose rate on ectopic ossicle formation. Radiother Oncol 10:157–161

    Article  CAS  PubMed  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2004) Impact of angiotensin II type 2 receptor blockade on experimental radiation nephropathy. Radiat Res 161:312–317

    Article  CAS  PubMed  Google Scholar 

  • Muksinova KN, Mushkachyova GS (1990) Cellular and molecular basis for rearrangement of hemopoiesis in long-term radiation exposures. Energoatomizdat, Moscow, p 161 (Russian)

    Google Scholar 

  • Murzina LD, Muksinova KN (1982) Cell dynamics in the lymphoid organs during prolonged administration of tritium oxide in different quantities. Radiobiologiya 22(3):365–368 (Russian)

    CAS  Google Scholar 

  • Mushkachyova GS, Rabinovich YI, Privalov VA et al (2006) Iodine-131 late effects in case of childhood exposure. Med Radiol Radiat Bezopasn 2:51–61 (Russian)

    Google Scholar 

  • Mutovkina NL (1970) Status of bone and hematopoietic tissue in young persons exposed to uranium fission products. Bulleten Radiatsionnoy Meditsiny 1:75–78 (Russian)

    Google Scholar 

  • Nikanorova YA, Ivanov KY, Khaymovich TI et al (2002) Study of reparative DNA synthesis in lymphocytes of persons occupationally exposed to radiation. Radiats Biol Radioecol 42(6):759–764 (Russian)

    CAS  PubMed  Google Scholar 

  • Nikolskiy AV, Koterov AN (1999) Radioadaptive response of mammalian cells. Med Radiol Radiat Bezopasn 6:5–18 (Russian)

    Google Scholar 

  • Nogami M, Huang JT, James SJ et al (1993) Mice chronically exposed to low dose ionizing radiation possess splenocytes with elevated levels of HSP70 mRNA, HSC70 and HSP72 and with an increased capacity to proliferate. Int J Radiat Biol 63(6):775–783

    Article  CAS  PubMed  Google Scholar 

  • Nordal RA, Wong CS (2005) Molecular targets in radiation-induced blood–brain barrier disruption. Int J Radiat Oncol Biol Phys 62:279–287

    Article  CAS  PubMed  Google Scholar 

  • Novosyolova EG, Safonova MV (1994) Functional activity of splenic T- and B-lymphocytes in rats under the conditions of continuous exposure to low dose rates of gamma-radiation. Radiats Biol Radioekol 34:407–413 (Russian)

    Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–665

    Article  CAS  PubMed  Google Scholar 

  • Okladnikova ND (2001) Chronic radiation sickness induced by exposure to external, or predominantly external gamma-radiation in man. In: Ilyin LA (ed) Radiatsionnaya meditsina. Izdat, Moscow, pp 253–274 (Russian)

    Google Scholar 

  • Oliper TV (1960) Ostealgic syndrome in the clinical course of the chronic radiation sickness. Bulleten Radiatsionnoy Meditsiny 1a:73–80 (Russian)

    Google Scholar 

  • Ossipov AN, Yelakov AL, Puchkov PV et al (2002) The estimation of molecular and cytogenetic effects in mice exposed to chronic low dose gamma-radiation. Genetika 38(10):1345–1350 (Russian)

    Google Scholar 

  • Otsuka K, Koana T, Tauchi H et al (2006) Activation of antioxidative enzymes induced by low-dose-rate whole-body gamma irradiation: adaptive response in terms of initial DNA damage. Radiat Res 166(3):474–478

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Shankar BS, Sharma D, Sainis KB (2005) Low dose radiation induced immunomodulation: effect on macrophages and CD8+ T cells. Int J Radiat Biol 81(11):801–812

    Article  CAS  PubMed  Google Scholar 

  • Paranich AV, Tyslenko KV, Frolova NA et al (2001) Structural and functional changes in various cells following radiation exposure. Biofizika 46(6):1103–1107 (Russian)

    CAS  PubMed  Google Scholar 

  • Park SH, Lee SJ, Chung HY et al (2000) Inducible heat-shock protein 70 is involved in the radioadaptive response. Radiat Res 153(3):318–326

    Article  CAS  PubMed  Google Scholar 

  • Parker RG (1972) Tolerance of mature bone and cartilage in clinical radiation therapy. Radiation effect and tolerance, normal tissue. In: Vaeth JM (ed) Frontiers of radiation therapy and oncology. pp 312–331

    Google Scholar 

  • Pecaut MJ, Nelson GA, Gridley DS (2001) Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs. In Vivo 15:195–208

    CAS  PubMed  Google Scholar 

  • Pelevina II, Gotlib VYA, Kudriashova OV et al (1996) Genomic instability after exposure to radiation at low doses (in the 10-kilometer zone of the accident at the Chernobyl Atomic Electric Power Station and under laboratory conditions. Radiats Biol Radioekol 36(4):546–560 (Russian)

    CAS  Google Scholar 

  • Pelevina II, Aleshchenko AA, Antoshchina MM et al (2007) An individual variability of the adaptive response to irradiation in human cells. Approach to its determination. Radiats Biol Radioekol 47:658–666 (Russian)

    CAS  Google Scholar 

  • Pesternikova VS, Okladnikova ND (2003a) Evaluation of the parameters of the morphological composition of peripheral blood in patients with chronic radiation syndrome of a 40-year period of follow-up. Vopr Radiat Bezopasn 3:60–66 (Russian)

    Google Scholar 

  • Pesternikova VS, Okladnikova ND (2004) Assessment of BM hematopoiesis in patients with chronic radiation sickness after 40 years of follow-up. Vopr Radiat Bezopasn 4:41–45 (Russian)

    Google Scholar 

  • Petrov NP, Petrov VN (1998) Results of the 10-year follow-up of the functional status of the thyroid system in people who were engaged in the clean-up operations following the accident at the Chernobyl Atomic Electric Power Station. Med Radiol Radiat Bezopasn 4:17–19

    Google Scholar 

  • Pogribny I, Koturbash I, Tryndyak V et al (2005) Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res 3(10):553–561

    Article  CAS  PubMed  Google Scholar 

  • Prise KM (2006) New advances in radiation biology. Occup Med (Lond) 56:156–161

    Article  Google Scholar 

  • Rao SD, Frame B, Miller MJ et al (1980) Hyperparathyroidism following head and neck irradiation. Arch Intern Med 140:205–207

    Article  CAS  PubMed  Google Scholar 

  • Rees GS, Daniel CP, Morris SD et al (2004) Occupational exposure to ionizing radiation has no effect on T- and B-cell total counts or percentages of helper, cytotoxic and activated T-cell subsets in the peripheral circulation of male radiation workers. Int J Radiat Biol 80:493–498

    Article  CAS  PubMed  Google Scholar 

  • Rigaud O, Moustacchi E (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat Res 358:127–134

    Article  PubMed  Google Scholar 

  • Robbins ME, Bonsib SM (1995) Radiation nephropathy: a review. Scanning Microsc 9:535–560

    CAS  PubMed  Google Scholar 

  • Robbins ME, Soranson JA, Wilson GD et al (1994) Radiation-induced changes in the kinetics of glomerular and tubular cells in the pig kidney. Radiat Res 138:107–113

    Article  CAS  PubMed  Google Scholar 

  • Rola R, Raber J, Rizk A et al (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188:316–330

    Article  CAS  PubMed  Google Scholar 

  • Ron E, Modan B, Floro S et al (1982) Mental function following scalp irradiation during childhood. Am J Epidemiol 116:149–160

    CAS  PubMed  Google Scholar 

  • Rotolo JA, Zhang J, Donepudi M et al (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280(28):2642526434

    Article  CAS  Google Scholar 

  • Rynkova NN, Chusova VN, Shulyatikova AY, Titova LA (1966) On the status of the adrenal cortex function and ovaries, and on changes in some metabolic parameters in the late period of CRS. Bulleten Radiatsionnoy Meditsiny 2:74–82 (Russian)

    Google Scholar 

  • Safwat A (2000) The immunobiology of low-dose total-body irradiation: more questions than answers. Radiat Res 153:599–604

    Article  CAS  PubMed  Google Scholar 

  • Sagan LA (1989) On radiation, paradigms, and hormesis. Science 245(4918):574, 621

    Article  CAS  PubMed  Google Scholar 

  • Sasaki MS, Ejima Y, Tachibana A, Yamada T, Ishizaki K, Shimizu T, Nomura T (2002) DNA damage response pathway in radioadaptive response. Mutat Res 504:101–118

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana A, Hilton MB, Kaldis P (2008) p21 Inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S phase DNA damage checkpoint. Mol Biol Cell 19(1):65–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savant SG, Randers-Pehrson G, Metting NF, Hall EJ (2001) Adaptive response and the bystander effect induced by radiation in C3H 10 T(1/2) cells in culture. Radiat Res 156(2):177–180

    Article  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    Article  CAS  PubMed  Google Scholar 

  • Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18

    Article  CAS  PubMed  Google Scholar 

  • Schwarz BA, Bhandoola A (2006) Trafficking from the BM to the thymus: a prerequisite for thymopoiesis. Immunol Rev 209:47–57

    Article  PubMed  Google Scholar 

  • Seed TM, Kaspar LV (1992) Acquired radioresistance of hematopoietic progenitors (granulocyte/monocyte colony-forming units) during chronic radiation leukemogenesis. Cancer Res 52:1469–1476

    CAS  PubMed  Google Scholar 

  • Seed TM, Cullen SM, Kaspar LV et al (1980) Hemopathologic consequences of protracted gamma irradiation: alterations in granulocyte reserves and granutocyte mobilization. Blood 56:42–51

    CAS  PubMed  Google Scholar 

  • Seed TM, Chubb GT, Tolle DV et al (1982) The ultrastructure of radiation-induced endosteal myelofibrosis in the dog. Scan Electron Microsc (Pt 1):377–391

    Google Scholar 

  • Seed TM, Fritz TE, Tolle DV et al (2002a) Hematopoietic responses under protracted exposures to low daily dose gamma irradiation. Adv Space Res 30:945–955

    Article  CAS  PubMed  Google Scholar 

  • Seed TM, Tolle DV, Fritz TE (2002b) Haematological responses to chronic irradiation: the past Argonne experience and future AFRRI initiatives. Br J Radiol 26:94–102

    Google Scholar 

  • Seliger B, Abken H, Ferrone S (2003) HLAG and MIC expression in tumors and their role in anti-tumor immunity. Trends Immunol 24(2):82–87

    Article  CAS  PubMed  Google Scholar 

  • Sergeyevich LA, Karnaukhova NA (2002) Changes in the functional activity of the thymocyte synthesis induced by acute and chronic exposure to gamma-irradiation in rats. Radiats Biol Radioekol 42:48–53 (Russian)

    Google Scholar 

  • Shabalov NP (ed) (2007) Pediatrics. SpetsLit, Saint Petersburg (Russian)

    Google Scholar 

  • Shagina NB, Tolstykh EI, Degteva MO (2003) Improvements in the biokinetic model for strontium with allowance for age and gender differences in bone mineral metabolism. Radiat Prot Dosimetry 105:619–622

    Article  CAS  PubMed  Google Scholar 

  • Shalet SM, Beardwell CG, Jones PH et al (1976) Ovarian failure following abdominal irradiation in childhood. Br J Cancer 33:655–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shao C, Lyng FM, Folkard M et al (2006) Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res 166(3):479–487

    Article  CAS  PubMed  Google Scholar 

  • Sheperd BE, Guttorp P, Lansdorp PM et al (2004) Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths. Exp Hematol 32:1040–1050

    Article  CAS  Google Scholar 

  • Shi L, Molina DP, Robbins ME et al (2008) Hippocampal neuron number is unchanged 1 year after fractionated whole-brain irradiation at middle age. Int J Radiat Oncol Biol Phys 71:526–532

    Article  PubMed Central  PubMed  Google Scholar 

  • Shibkova DZ, Akleyev AV (2006) Adaptive-compensatory reactions of the hematopoietic system under chronic radiation exposure. Poligraf-Master, Moscow-Chelyabinsk (Russian)

    Google Scholar 

  • Shore RE, Albert RE, Pasternack BS (1976) Follow-up study of patients treated by X-ray epilation for Tinea capitis; resurvey of post-treatment illness and mortality experience. Arch Environ Health 31:21–28

    Article  CAS  PubMed  Google Scholar 

  • Shvedov VL, Akleyev AV (2001) Radiobiology of strontium-90. Pegas, Chelyabinsk (Russian)

    Google Scholar 

  • Sklar CA (2002) Childhood brain tumors. J Pediatr Endocrinol Metab 15(2):669–673

    PubMed  Google Scholar 

  • Sklar CA, Mertens AC, Walter A et al (2000) Changes in body mass index and prevalence of overweight in survivors of childhood acute lymphoblastic leukemia: role of cranial irradiation. Med Pediatr Oncol 35:91–95

    Article  CAS  PubMed  Google Scholar 

  • Smirnov DG, Kirillova EN, Muksinova KN (1990) The early changes in humoral immunity under the prolonged action of tritium oxide with different dose rates. Radiobiologiya 30:129–133 (Russian)

    CAS  Google Scholar 

  • Smirnova OA, Yonezawa M (2004) Radioresistance in mammals induced by low-level chronic irradiation: modeling and experimental investigations. Health Phys 87(4):366–374

    Article  CAS  PubMed  Google Scholar 

  • Somodi Z, Zyuzikov NA, Kashino G et al (2005) Radiation-induced genomic instability in repair deficient mutants of Chinese hamster cells. Int J Radiat Biol 81(12):929–936

    Article  CAS  PubMed  Google Scholar 

  • Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9:1173–1182

    CAS  PubMed  Google Scholar 

  • Starinskiy VV, Aleksandrova LM, Sotnikova YN et al (1997) Peculiarities of the status of hormone-dependent and hormonogenic organs of women residing on the territories with elevated background radiation level. Akush Ginekol 4:49–52 (Russian)

    Google Scholar 

  • Stecca C, Gerber GB (1998) Adaptive response to DNA-damaging agents. Biochem Pharmacol 55:941–951

    Article  CAS  PubMed  Google Scholar 

  • Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  CAS  PubMed  Google Scholar 

  • Stewart FA, Oussoren Y, Van Tinteren H et al (1994) Loss of reirradiation tolerance in the kidney with increasing time after single or fractionated partial tolerance doses. Int J Radiat Biol 66:169–179

    Article  CAS  PubMed  Google Scholar 

  • Stewart FA, te Poele JA, Van der Wal AF et al (2001) Radiation nephropathy-the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40:952–957

    Article  CAS  PubMed  Google Scholar 

  • Stewart FA, Heeneman S, Te Poele J et al (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658

    Article  CAS  PubMed  Google Scholar 

  • Sumina MV, Azizova TV (1989) Risk factors and clinical and functional assessment of the early cerebral atherosclerosis in persons with chronic radiation sickness. Bulleten Radiatsionnoy Meditsiny 4:53–58 (Russian)

    Google Scholar 

  • Sumina MV, Azizova TV (1991) Retrospective assessment of the major neurologic syndromes of the chronic radiation sickness over the 40-year follow-up period. Bulleten Radiatsionnoy Meditsiny 1:3–7 (Russian)

    Google Scholar 

  • Suzuki K, Yamaji H, Kobashigawa S et al (2011) Epigenetic gene silencing is a novel mechanism involved in delayed manifestation of radiation-induced genomic instability in mammalian cells. Radiat Res 175(4):416–423

    Article  CAS  PubMed  Google Scholar 

  • Thomson AB, Critchley HO, Kelnar CJ et al (2002) Late reproductive sequelae following treatment of childhood cancer and options for fertility preservation. Best Pract Res Clin Endocrinol Metab 16:311–334

    Article  PubMed  Google Scholar 

  • UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation report to the General Assembly with scientific annexes. United Nations, New York

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation report to the General Assembly with scientific annexes. United Nations, New York

    Google Scholar 

  • UNSCEAR (2008) Effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation report to the General Assembly with scientific annexes. United Nations, New York

    Google Scholar 

  • UNSCEAR (2009) Effects of ionizing radiation. Non-targeted and delayed effects of exposure to ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly with Scientific Annexes. United Nations, New York

    Google Scholar 

  • Van der Kogel AJ (1986) Radiation-induced damage in the central 8734 nervous system: an interpretation of target cell responses. Br J Cancer 7:207–217

    Google Scholar 

  • Van Kleef EM, Zurcher C, Oussoren YG et al (2000) Long-term effects of total-body irradiation on the kidney of Rhesus monkeys. Int J Radiat Biol 76:641–648

    Article  PubMed  Google Scholar 

  • Vekhovanets EV, Chernyshov VP, Sluvkin II, Antipkin YG, Vasyuk FN, Kolos VI (2000) Analysis of blood lymphocytes subsets in children living around Chernobyl exposed long-term to low doses of Cesium-137 and various doses of Iodine-131. Radiat Res 153(3):760–772

    Article  Google Scholar 

  • Verbenko AA, Chusova VN (1967) On changes in the sexuality of women with chronic radiation sickness. Bulleten Radiatsionnoy Meditsiny 3:67–74 (Russian)

    Google Scholar 

  • Wallace WH (2011) Oncofertility and preservation of reproductive capacity in children and young adults. Cancer 117(10):2301–2310

    Article  PubMed  Google Scholar 

  • Wilkins RC, Kutzner BC, Truong M, Mclean JRN (2002) The effects of the ratio of CD4+ to CD8+ T-cells on radiation- induced apoptosis in human lymphocytes subpopulations. Int J Radiat Biol 78(8):681–688

    Article  CAS  PubMed  Google Scholar 

  • Withers HR, Taylor JM, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    Article  CAS  PubMed  Google Scholar 

  • Wolff S (1996) Aspects of the adaptive response to very low doses of radiation and other agents. Mutat Res 358:135–142

    Article  PubMed  Google Scholar 

  • Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4:273–284

    Article  CAS  PubMed  Google Scholar 

  • Worgul BV, Merriam GR Jr, Medvedovsky C (1989) Cortical cataract development – an expression of primary damage to the lens epithelium. Lens Eye Toxic Res 6:559–571

    CAS  PubMed  Google Scholar 

  • Worgul BV, David J, Odrich S et al (1991) Evidence of genotoxic damage in human 8688 cataractous lenses. Mutagenesis 6:495–499

    Article  CAS  PubMed  Google Scholar 

  • Wu CT, Lajtha LG (1975) Haemopoietic stem-cell kinetics during continuous irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 27:41–50

    Article  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Greenstock CL, Trivedi A, Mitchel RE (1996) Occupational levels of radiation exposure induce surface expression of interleukin-2 receptors in stimulated human peripheral blood lymphocytes. Radiat Environ Biophys 35(2):89–93

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Anzenberg V, Held KD (2007) The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts. Radiat Res 168(3):292–298

    Article  CAS  PubMed  Google Scholar 

  • Yarilin AA (1996) Immunological disturbances. In: Burlakova EB (ed) Chernobyl catastrophe consequences: Human Health, Moscow. Nauchnyi Sovet Po Radiobiologii (Rossiiskaia Akademiia Nauk), Tsentr Ekologicheskoi Politiki Rossii, pp 68–96 (Russian)

    Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akleyev, A.V. (2014). Mechanisms Involved in Chronic Radiation Exposure Effects: Pathogenesis of Chronic Radiation Syndrome. In: Chronic Radiation Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45117-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45117-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45116-4

  • Online ISBN: 978-3-642-45117-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics