Skip to main content

Subject and Counter-Subject Detection for Analysis of the Well-Tempered Clavier Fugues

  • Conference paper
Book cover From Sounds to Music and Emotions (CMMR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7900))

Included in the following conference series:

Abstract

Fugue analysis is a challenging problem. We propose an algorithm that detects subjects and counter-subjects in a symbolic score where all the voices are separated, determining the precise ends and the occurrence positions of these patterns. The algorithm is based on a diatonic similarity between pitch intervals combined with a strict length matching for all notes, except for the first and the last one. On the 24 fugues of the first book of Bach’s Well-Tempered Clavier, the algorithm predicts 66% of the subjects with a musically relevant end, and finally retrieves 85% of the subject occurrences, with almost no false positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 24 Jewels, http://www.earsense.org/Earsense/WTC/Shostakovich

  2. Browles, L.: Creating a tool to analyse contrapuntal music. Bachelor Dissertation, Univ. of Bristol (2005)

    Google Scholar 

  3. Bruhn, S.: J. S. Bach’s Well-Tempered Clavier. In-depth Analysis and Interpretation (1993) iSBN 962-580-017-4, 962-580-018-2, 962-580-019-0, 962-580-020-4, http://www-personal.umich.edu/~siglind/text.htm

  4. Bruhn, S.: J. S. Bachs Wohltemperiertes Klavier, Analyse und Gestaltung. Edition Gorz (2006) iSBN 3-938095-05-9

    Google Scholar 

  5. Cambouropoulos, E.: A general pitch interval representation: Theory and applications. Journal of New Music Research 25(3), 231–251 (1996)

    Article  Google Scholar 

  6. Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mohamed, M., Sagot, M.F.: A pattern extraction algorithm for abstract melodic representations that allow partial overlapping of intervallic categories. In: Int. Society for Music Information Retrieval Conf. (ISMIR 2005), pp. 167–174 (2005)

    Google Scholar 

  7. Cambouropoulos, E., Tsougras, C.: Influence of musical similarity on melodic segmentation: Representations and algorithms. In: Sound and Music Computing, SMC 2004 (2004)

    Google Scholar 

  8. Charlier, C.: Pour une lecture alternative du Clavier bien tempéré. Jacquart (2009)

    Google Scholar 

  9. Clifford, R., Iliopoulos, C.S.: Approximate string matching for music analysis. Soft. Comput. 8(9), 597–603 (2004)

    Article  MATH  Google Scholar 

  10. Crawford, T., Iliopoulos, C., Raman, R.: String matching techniques for musical similarity and melodic recognition. Computing in Musicology 11, 71–100 (1998)

    Google Scholar 

  11. Ghias, A., Logan, J., Chamberlin, D., Smith, B.C.: Query by humming: musical information retrieval in an audio database. In: ACM Multimedia, pp. 231–236 (1995)

    Google Scholar 

  12. Giraud, M., Groult, R., Levé, F.: Detecting Episodes with Harmonic Sequences for Fugue Analysis. In: Int. Symp. for Music Information Retrieval, ISMIR 2012 (2012)

    Google Scholar 

  13. Hakenberg, J.: The Pirate Fugues, http://www.hakenberg.de/music/music.htm

  14. Hewlett, W.B.: A base-40 number-line representation of musical pitch notation. Musikometrika 4(1-14) (1992)

    Google Scholar 

  15. Hiraga, Y.: Structural recognition of music by pattern matching. In: Int. Computer Music Conference (ICMC 1997), pp. 426–429 (1997)

    Google Scholar 

  16. Hsu, J.L., Liu, C.C., Chen, A.: Efficient repeating pattern finding in music databases. In: Int. Conference on Information and Knowledge Management, CIKM 1998 (1998)

    Google Scholar 

  17. Karydis, I., Nanopoulos, A., Manolopoulos, Y.: Finding maximum-length repeating patterns in music databases. Multimedia Tools Appl. 32, 49–71 (2007)

    Article  Google Scholar 

  18. Lemström, K., Laine, P.: Musical information retrieval using musical parameters. In: Int. Computer Music Conference (ICMC 1998), pp. 341–348 (1998)

    Google Scholar 

  19. Liu, C.C., Hsu, J.L., Chen, A.L.: Efficient theme and non-trivial repeating pattern discovering in music databases. In: Int. Conf. on Data Engineering (ICDE 1999), pp. 14–21 (1999)

    Google Scholar 

  20. Lung Lo, Y., Yu Chen, C.: Fault tolerant non-trivial repeating pattern discovering for music data. In: Int. Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR 2006), pp. 130–135 (2006)

    Google Scholar 

  21. Meek, C., Birmingham, W.P.: Automatic thematic extractor. Journal of Intelligent Information Systems 21(1), 9–33 (2003)

    Article  Google Scholar 

  22. Meredith, D.: Pitch spelling algorithms. In: 5th Triennal ESOM Conference, pp. 204–207 (2003)

    Google Scholar 

  23. Mongeau, M., Sankoff, D.: Comparaison of musical sequences. Computer and the Humanities 24, 161–175 (1990)

    Article  Google Scholar 

  24. Orpen, K.S., Huron, D.: Measurement of similarity in music: A quantitative approach for non-parametric representations. Computers in Music Research 4, 1–44 (1992)

    Google Scholar 

  25. Perttu, S.: Combinatorial pattern matching in musical sequences. Master Thesis, University of Helsinki (2000)

    Google Scholar 

  26. Plutalov, D.V.: Dmitry Shostakovich’s Twenty-Four Preludes and Fugues op. 87: An Analysis and Critical Evaluation of the Printed Edition Based on the Composer’s Recorded Performance. Ph.D. thesis, University of Nebraska (2010)

    Google Scholar 

  27. Prout, E.: Analysis of J.S. Bach’s forty-eight fugues (Das Wohltemperierte Clavier). E. Ashdown, London (1910)

    Google Scholar 

  28. Rafailidis, D., Nanopoulos, A., Manolopoulos, Y., Cambouropoulos, E.: Detection of stream segments in symbolic musical data. In: Int. Society for Music Information Retrieval Conf. (ISMIR 2008), pp. 83–88 (2008)

    Google Scholar 

  29. Smith, L., Medina, R.: Discovering themes by exact pattern matching. In: Int. Symp. for Music Information Retrieval (ISMIR 2001), pp. 31–32 (2001)

    Google Scholar 

  30. Weng, P.H., Chen, A.L.P.: Automatic musical form analysis. In: Int. Conference on Digital Archive Technologies, ICDAT 2005 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giraud, M., Groult, R., Levé, F. (2013). Subject and Counter-Subject Detection for Analysis of the Well-Tempered Clavier Fugues. In: Aramaki, M., Barthet, M., Kronland-Martinet, R., Ystad, S. (eds) From Sounds to Music and Emotions. CMMR 2012. Lecture Notes in Computer Science, vol 7900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41248-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41248-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41247-9

  • Online ISBN: 978-3-642-41248-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics