Skip to main content

Bone Metastasis

  • Chapter
  • First Online:
Functional Imaging in Oncology
  • 1740 Accesses

Abstract

Bone metastasis is frequently observed in the most relevant types of solid tumors representing an important imaging target for detection and follow-up. For this purpose, morphologic aspects of skeletal lesions are assessed by conventional X-rays, CT, and MRI, whereas bone scintigraphy and SPECT reveal changes of bone remodeling. However, more recently developed approaches reflecting functional and metabolic characteristics in bone metastasis can be used for early detection and treatment response assessment of these lesions that include dynamic contrast-enhanced, vessel size, and diffusion-weighted imaging as well as MR spectroscopy, different PET tracers, and hybrid techniques. The focus of this chapter is to review functional and metabolic techniques and the underlying pathogenic processes resulting in the respective imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the curve

BS:

Bone scintigraphy

CPS:

Cadence contrast pulse sequencing

CT:

Computed tomography

DCE:

Dynamic contrast-enhanced

DWI:

Diffusion-weighted imaging

EORTC:

European Organisation for Research and Treatment of Cancer

F:

Fluoride

FDG:

Fluorodeoxyglucose

FT:

Filling time

MDP:

Methylene diphosphonate

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

PDGFR:

Platelet-derived growth factor receptor

PE:

Peak enhancement

PET:

Positron emission tomography

PTHrP:

Parathyroid hormone-related protein

RANK:

Receptor activator of nuclear factor Îş B

RANKL:

Receptor activator of nuclear factor Îş B ligand

RBF:

Regional blood flow

RBV:

Regional blood volume

RECIST:

Response evaluation criteria in solid tumors

RGD:

Tripeptide sequence Arg-Gly-Asp

SPECT:

Single-photon emission computed tomography

TGF-β:

Transforming growth factor-β

TIC:

Time-intensity curve

UICC:

International Union Against Cancer

US:

Ultrasound

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VSI:

Vessel size imaging

WHO:

World Health Organization

XR:

Conventional X-rays

References

  1. Galasko C. The anatomy and pathways of skeletal metastases. Boston: GK Hall; 1981.

    Google Scholar 

  2. Bäuerle T, et al. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging. Curr Pharm Biotechnol. 2012;13:584–94.

    PubMed  Google Scholar 

  3. Clain A. Secondary malignant disease of bone. Br J Cancer. 1965;19:15–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    CAS  PubMed  Google Scholar 

  5. Henriksen K, et al. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J Biol Chem. 2003;278:48745–53.

    CAS  PubMed  Google Scholar 

  6. Chavez-Macgregor M, et al. Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res. 2005;11:5396–400.

    CAS  PubMed  Google Scholar 

  7. Voorzanger-Rousselot N, et al. Association of 12 serum biochemical markers of angiogenesis, tumour invasion and bone turnover with bone metastases from breast cancer: a crossectional and longitudinal evaluation. Br J Cancer. 2006;95:506–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. van der Pluijm G, et al. Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res. 2001;16:1077–91.

    PubMed  Google Scholar 

  9. Andersen TL, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174:239–47.

    CAS  PubMed  Google Scholar 

  10. Bäuerle T, Semmler W. Imaging response to systemic therapy for bone metastases. Eur Radiol. 2009;19:2495–507.

    PubMed  Google Scholar 

  11. Lee RJ, et al. Treatment and prevention of bone complications from prostate cancer. Bone. 2011;48:88–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Luckman SP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13:581–9.

    CAS  PubMed  Google Scholar 

  13. Guise TA. Antitumor effects of bisphosphonates: promising preclinical evidence. Cancer Treat Rev. 2008;34 Suppl 1:S19–24.

    CAS  PubMed  Google Scholar 

  14. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Coleman RE, Brown JE. Monitoring response to treatment. In: Jasmin C, Coleman RE, Coia LR, Capanna R, Saillant G, editors. Textbook of bone metastases. Chichester: Wiley; 2005. p. 105–8.

    Google Scholar 

  16. Hamaoka T, et al. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53.

    PubMed  Google Scholar 

  17. Hayward JL, et al. Assessment of response to therapy in advanced breast cancer. Br J Cancer. 1977;35:292–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hayward JL, et al. Assessment of response to therapy in advanced breast cancer (an amendment). Br J Cancer. 1978;38:201.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. World Health Organisation. WHO handbook for reporting results of cancer treatment. Geneva: WHO; 1979.

    Google Scholar 

  20. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    CAS  PubMed  Google Scholar 

  21. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  PubMed  Google Scholar 

  22. Edelstyn GA, et al. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol. 1967;18:159–62.

    Google Scholar 

  23. Costelloe CM, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10:606–14.

    PubMed  Google Scholar 

  24. Libshitz HI, Hortobagyi GN. Radiographic evaluation of therapeutic response in bony metastases of breast cancer. Skeletal Radiol. 1981;7:159–65.

    CAS  PubMed  Google Scholar 

  25. Vinholes J, et al. Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev. 1996;22:289–331.

    CAS  PubMed  Google Scholar 

  26. Coombes RC, et al. Assessment of response of bone metastases to systemic treatment in patients with breast cancer. Cancer. 1983;52:610–4.

    CAS  PubMed  Google Scholar 

  27. Hortobagyi GN, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med. 1996;335:1785–91.

    CAS  PubMed  Google Scholar 

  28. Kido DK, et al. Comparative sensitivity of CT scans, radiographs and radionuclide bone scans in detecting metastatic calvarial lesions. Radiology. 1978;128:371–5.

    CAS  PubMed  Google Scholar 

  29. Krahe T, et al. Diagnostic evaluation of full x-ray pictures and computed tomography of bone tumors of the spine. Rofo. 1989;150:13–9.

    CAS  PubMed  Google Scholar 

  30. Krishnamurthy GT, et al. Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA. 1977;237:2504–6.

    CAS  PubMed  Google Scholar 

  31. Horger M, et al. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol. 2005;54:289–97.

    PubMed  Google Scholar 

  32. Helms CA, et al. Detection of bone-marrow metastases using quantitative computed tomography. Radiology. 1981;140:745–50.

    CAS  PubMed  Google Scholar 

  33. Bellamy EA, et al. Comparison of computed tomography and conventional radiology in the assessment of treatment response of lytic bony metastases in patients with carcinoma of the breast. Clin Radiol. 1987;38:351–5.

    CAS  PubMed  Google Scholar 

  34. Reinbold WD, et al. Osteodensitometry of vertebral metastases after radiotherapy using quantitative computed tomography. Skeletal Radiol. 1989;18:517–21.

    CAS  PubMed  Google Scholar 

  35. Koswig S, Budach V. Remineralization and pain relief in bone metastases after after different radiotherapy fractions (10 times 3 Gy vs. 1 time 8 Gy). A prospective study. Strahlenther Onkol. 1999;175:500–8.

    CAS  PubMed  Google Scholar 

  36. Vassiliou V, et al. Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol). 2011;23:632–45.

    CAS  Google Scholar 

  37. Lecouvet FE, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25:3281–7.

    PubMed  Google Scholar 

  38. Imamura F, et al. Detection of bone marrow metastases of small cell lung cancer with magnetic resonance imaging: early diagnosis before destruction of osseous structure and implications for staging. Lung Cancer. 2000;27:189–97.

    CAS  PubMed  Google Scholar 

  39. Godersky JC, et al. Use of magnetic resonance imaging in the evaluation of metastatic spinal disease. Neurosurgery. 1987;21:676–80.

    CAS  PubMed  Google Scholar 

  40. Petren-Mallmin M, et al. Detection of breast cancer metastases in the cervical spine. Acta Radiol. 1993;34:543–8.

    CAS  PubMed  Google Scholar 

  41. Steinborn MM, et al. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr. 1999;23:123–9.

    CAS  PubMed  Google Scholar 

  42. Baur-Melnyk A, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190:1097–104.

    PubMed  Google Scholar 

  43. Brown AL, et al. T1-weighted magnetic resonance imaging in breast cancer vertebral metastases: changes on treatment and correlation with response to therapy. Clin Radiol. 1998;53:493–501.

    CAS  PubMed  Google Scholar 

  44. Saip P, et al. Response evaluation of bone metastases in breast cancer: value of magnetic resonance imaging. Cancer Invest. 1999;17:575–80.

    CAS  PubMed  Google Scholar 

  45. Tombal B, et al. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate. 2005;65:178–87.

    PubMed  Google Scholar 

  46. D’Agostino F, et al. Differentiation of normal and neoplastic bone tissue in dynamic gadolinium-enhanced magnetic resonance imaging: validation of a semiautomated technique. Radiol Med. 2010;115:804–14.

    PubMed  Google Scholar 

  47. Kayhan A, et al. Dynamic contrast-enhanced MR imaging findings of bone metastasis in patients with prostate cancer. World J Radiol. 2011;3:241–5.

    PubMed Central  PubMed  Google Scholar 

  48. Michoux N, et al. Evaluation of DCE-MRI postprocessing techniques to assess metastatic bone marrow in patients with prostate cancer. Clin Imaging. 2012;36:308–15.

    PubMed  Google Scholar 

  49. Tofts PS, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    CAS  PubMed  Google Scholar 

  50. Chen WT, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging. 2002;15:308–14.

    PubMed  Google Scholar 

  51. Tokuda O, et al. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol. 2005;34:632–8.

    PubMed  Google Scholar 

  52. Northam M, et al. Bone metastases: evaluation of acuity of lesions using dynamic gadolinium-chelate enhancement, preliminary results. J Magn Reson Imaging. 2011;34:120–7.

    PubMed  Google Scholar 

  53. Montemurro F, et al. Dynamic contrast enhanced magnetic resonance imaging in monitoring bone metastases in breast cancer patients receiving bisphosphonates and endocrine therapy. Acta Radiol. 2004;45:71–4.

    CAS  PubMed  Google Scholar 

  54. Bäuerle T, et al. Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft-tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia. 2008;10:511–20.

    PubMed Central  PubMed  Google Scholar 

  55. Bäuerle T, et al. Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res. 2010;16:3215–25.

    PubMed  Google Scholar 

  56. Bäuerle T, et al. Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer. 2011;128:2453–62.

    PubMed  Google Scholar 

  57. Merz M, et al. Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur J Cancer. 2010;47:277–86.

    Google Scholar 

  58. Merz M, et al. Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur J Cancer. 2011;47:277–86.

    CAS  PubMed  Google Scholar 

  59. Bäuerle T, et al. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol. 2010;73:280–7.

    PubMed  Google Scholar 

  60. Brix G, et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991;4:621–8.

    Google Scholar 

  61. Paik SH, et al. High-resolution sonography of the rib: can fracture and metastasis be differentiated? AJR Am J Roentgenol. 2005;184:969–74.

    PubMed  Google Scholar 

  62. Merz M, et al. Quantitative contrast-enhanced ultrasound for imaging anti-angiogenic treatment response in experimental osteolytic breast cancer bone metastases. Invest Radiol. 2012;47:442–29.

    Google Scholar 

  63. Troprès I, et al. Vessel size imaging. Magn Reson Med. 2001;45:397–408.

    PubMed  Google Scholar 

  64. Troprès I, et al. Vessel size imaging using low intravascular contrast agent concentrations. MAGMA. 2004;17:313–6.

    PubMed  Google Scholar 

  65. Kiselev VG, et al. Vessel size imaging in humans. Magn Reson Med. 2005;53:553–63.

    CAS  PubMed  Google Scholar 

  66. Zwick S, et al. Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imaging. 2009;29:1125–33.

    PubMed  Google Scholar 

  67. Bäuerle T, et al. Diffusion-weighted imaging in patients with rectal carcinoma without and after chemoradiotherapy: a comparative study with histology. Eur J Radiol. 2013;82(3):444–52. pii: S0720-048X(12)00522-0.

    PubMed  Google Scholar 

  68. Hillengass J, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol. 2011;153:721–8.

    PubMed  Google Scholar 

  69. Barcelo J, et al. Diffusion-weighted whole-body MRI (virtual PET) in screening for osseous metastases. Radiologia. 2007;49:407–15.

    CAS  PubMed  Google Scholar 

  70. Sezer O, et al. Relationship between bone marrow angiogenesis and plasma cell infiltration and serum beta2-microglobulin levels in patients with multiple myeloma. Ann Hematol. 2001;80:598–601.

    CAS  PubMed  Google Scholar 

  71. Lecouvet FE, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68–75.

    PubMed  Google Scholar 

  72. Li C, et al. Clinical value of whole-body magnetic resonance diffusion weighted imaging on detection of malignant metastases. Chin Med Sci J. 2009;24:112–6.

    PubMed  Google Scholar 

  73. Nakanishi K, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007;6:147–55.

    PubMed  Google Scholar 

  74. Pearce T, et al. Bone metastases from prostate, breast and multiple myeloma: differences in lesion conspicuity at short-tau inversion recovery and diffusion-weighted MRI. Br J Radiol. 2012;85:1102–6.

    CAS  PubMed  Google Scholar 

  75. Wu LM, et al. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging. 2011;34:128–35.

    PubMed  Google Scholar 

  76. Eiber M, et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging. 2011;33:1160–70.

    PubMed  Google Scholar 

  77. Takenaka D, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging. 2009;30:298–308.

    PubMed  Google Scholar 

  78. Baur A, et al. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol. 2003;13:1699–708.

    PubMed  Google Scholar 

  79. Baur A, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207:349–56.

    CAS  PubMed  Google Scholar 

  80. Baur A, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22:366–72.

    CAS  PubMed  Google Scholar 

  81. Baur A, et al. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo. 2002;174:70–5.

    CAS  PubMed  Google Scholar 

  82. Biffar A, et al. Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Invest Radiol. 2011;46:601–9.

    PubMed  Google Scholar 

  83. Geith T, et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol. 2012;199:1083–92.

    PubMed  Google Scholar 

  84. Goudarzi B, et al. Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with (11)C-methionine PET and bone scintigraphy. Magn Reson Imaging. 2010;28:372–9.

    PubMed  Google Scholar 

  85. Mosavi F, et al. Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199:1114–20.

    PubMed  Google Scholar 

  86. Lee KC, et al. An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res. 2007;67:3524–8.

    CAS  PubMed  Google Scholar 

  87. Lee KC, et al. A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia. 2007;9:1003–11.

    PubMed Central  PubMed  Google Scholar 

  88. Hricak H, et al. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243:28–53.

    PubMed  Google Scholar 

  89. Fayad LM, et al. A feasibility study of quantitative molecular characterization of musculoskeletal lesions by proton MR spectroscopy at 3 T. AJR Am J Roentgenol. 2010;195:W69–75.

    PubMed Central  PubMed  Google Scholar 

  90. Wang CK, et al. Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology. 2004;232:599–605.

    PubMed  Google Scholar 

  91. Krasnow AZ, et al. Diagnostic bone scanning in oncology. Semin Nucl Med. 1997;27:107–41.

    CAS  PubMed  Google Scholar 

  92. Roodman GD. Skeletal imaging and management of bone disease. Hematol Am Soc Hematol Educ Program. 2008;2008:313–9.

    Google Scholar 

  93. Woolfenden JM, et al. Comparison of bone scintigraphy and radiography in multiple myeloma. Radiology. 1980;134:723–8.

    CAS  PubMed  Google Scholar 

  94. Arano Y. Recent advances in 99mTc radiopharmaceuticals. Ann Nucl Med. 2002;16:79–93.

    CAS  PubMed  Google Scholar 

  95. Costelloe CM, et al. Oncologic Imaging: A Multidisciplinary Approach. In: Silverman, PM, editor. Bone Metastases. Elsevier; 2012. p.555–62

    Google Scholar 

  96. Citrin DL. Problems and limitations of bone scanning with the 99Tcm-phosphates. Clin Radiol. 1977;28:97–105.

    CAS  PubMed  Google Scholar 

  97. Corcoran RJ, et al. Solitary abnormalities in bone scans of patients with extraosseous malignancies. Radiology. 1976;121:663–7.

    CAS  PubMed  Google Scholar 

  98. Hortobagyi GN, et al. Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer. 1984;53:577–82.

    CAS  PubMed  Google Scholar 

  99. O’Mara RE. Skeletal scanning in neoplastic disease. Cancer. 1976;37:480–6.

    PubMed  Google Scholar 

  100. Levenson RM, et al. Comparative value of bone scintigraphy and radiography in monitoring tumor response in systemically treated prostatic carcinoma. Radiology. 1983;146:513–8.

    CAS  PubMed  Google Scholar 

  101. Janicek MJ, et al. Healing flare in skeletal metastases from breast cancer. Radiology. 1994;192:201–4.

    CAS  PubMed  Google Scholar 

  102. Coleman RE, et al. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29:1354–9.

    CAS  PubMed  Google Scholar 

  103. Gillespie PJ, et al. Changes in 87mSr concentrations in skeletal metastases in patients responding to cyclical combination chemotherapy for advanced breast cancer. J Nucl Med. 1975;16:191–3.

    CAS  PubMed  Google Scholar 

  104. Han LJ, et al. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635–8.

    CAS  PubMed  Google Scholar 

  105. Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med. 1999;24:407–13.

    CAS  PubMed  Google Scholar 

  106. Gates GF. SPECT imaging of the lumbosacral spine and pelvis. Clin Nucl Med. 1988;13:907–14.

    CAS  PubMed  Google Scholar 

  107. Podoloff DA, et al. SPECT in the evaluation of cancer patients: not quo vadis; rather, ibi fere summus. Radiology. 1992;183:305–17.

    CAS  PubMed  Google Scholar 

  108. Romer W, et al. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med. 2006;47:1102–6.

    PubMed  Google Scholar 

  109. Groves AM, et al. Can 16-detector multislice CT exclude skeletal lesions during tumour staging? Implications for the cancer patient. Eur Radiol. 2006;16:1066–73.

    PubMed  Google Scholar 

  110. Utsunomiya D, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology. 2006;238:264–71.

    PubMed  Google Scholar 

  111. Blau M, et al. 18F-Fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.

    CAS  PubMed  Google Scholar 

  112. Hawkins RA, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.

    CAS  PubMed  Google Scholar 

  113. Schirrmeister H, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  114. Schirrmeister H, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17:2381–9.

    CAS  PubMed  Google Scholar 

  115. Schirrmeister H, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.

    CAS  PubMed  Google Scholar 

  116. Even-Sapir E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc–MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  117. Cook GJ. PET and PET/CT imaging of skeletal metastases. Cancer Imaging. 2010;10:1–8.

    PubMed  Google Scholar 

  118. Ohta M, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm–MDP bone scintigraphy. Nucl Med Commun. 2001;22:875–9.

    CAS  PubMed  Google Scholar 

  119. Qu X, et al. A meta-analysis of (1)(8)FDG-PET-CT, (1)(8)FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81:1007–15.

    PubMed  Google Scholar 

  120. Shie P, et al. Meta-analysis: comparison of F-18Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med. 2008;33:97–101.

    PubMed  Google Scholar 

  121. Cook GJ, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–9.

    CAS  PubMed  Google Scholar 

  122. Moon DH, et al. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39:431–5.

    CAS  PubMed  Google Scholar 

  123. Dehdashti F, et al. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med. 1999;26:51–6.

    CAS  PubMed  Google Scholar 

  124. Mortimer JE, et al. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19:2797–803.

    CAS  PubMed  Google Scholar 

  125. Hollinger EF, et al. Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med. 1998;23:93–8.

    CAS  PubMed  Google Scholar 

  126. Hoegerle S, et al. Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging? Radiology. 1998;209:253–8.

    CAS  PubMed  Google Scholar 

  127. Iagaru A, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50:501–5.

    PubMed  Google Scholar 

  128. Koukouraki S, et al. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:1115–22.

    CAS  PubMed  Google Scholar 

  129. Kumar P, et al. Clinical production, stability studies and PET imaging with 16-alpha-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci. 2007;10:256s–65.

    CAS  PubMed  Google Scholar 

  130. Young H, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.

    CAS  PubMed  Google Scholar 

  131. Mühlhausen U, et al. A novel PET tracer for the imaging of alphavbeta3 and alphavbeta5 integrins in experimental breast cancer bone metastases. Contrast Media Mol Imaging. 2011;6:413–20.

    PubMed  Google Scholar 

  132. Bretschi M, et al. Cilengitide affects microenvironment, tumor compartment and vascularization in experimental bone metastases as shown by longitudinal 18F-FDG PET and gene expression analyses. J Cancer Res Clin Oncol. 2013;139(4):573–83.

    CAS  PubMed  Google Scholar 

  133. Cheng C, et al. Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with 18F-FDG. Hell J Nucl Med. 2011;14:15–20.

    PubMed  Google Scholar 

  134. Sprague JE, et al. Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64Cu-labeled RGD peptide. J Nucl Med. 2007;48:311–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Wadas TJ, et al. Targeting the alphavbeta3 integrin for small-animal PET/CT of osteolytic bone metastases. J Nucl Med. 2009;50:1873–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Beer AJ, Schwaiger M. PET imaging of alphavbeta3 expression in cancer patients. Methods Mol Biol. 2011;680:183–200.

    CAS  PubMed  Google Scholar 

  137. Du Y, et al. Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol. 2007;25:3440–7.

    PubMed  Google Scholar 

  138. Tateishi U, et al. Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology. 2008;247:189–96.

    Google Scholar 

  139. Even-Sapir E, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by the Deutsche Forschungsgemeinschaft (DFG), BA 4027/4-1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bäuerle, T. (2014). Bone Metastasis. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics