Skip to main content

Scrotum

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Imaging plays an important role in the scrotum and is routinely used to diagnose, stage and monitor testicular neoplasms. Multiple imaging modalities are currently used, including conventional radiography, ultrasound, CT and MRI. Recently, advances in imaging technology have made possible a noninvasive assessment of functional tumour features and specific molecular pathways in vivo. Molecular and functional imaging as DWI, MR spectroscopy, dynamic contrast-enhanced techniques and PET or PET-CT evaluates changes in tumour physiology and function rather than anatomy, which are likely to be earlier and more sensitive manifestations of disease. Testicular cancer has an excellent prognosis, and the cure rate combining surgery, chemotherapy and radiotherapy is approximately 95 %. Early detection, a correct staging and treatment in multidisciplinary teams are all important factors in the management of patients with testicular cancer; fertility and quality of life are also important issues to address in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha fetoprotein

CEUS:

Contrast-enhanced ultrasonography

DCE-MRI:

Dynamic contrast-enhanced MRI

DWI:

Diffusion-weighted imaging

18FDG-PET:

18-fluorodeoxyglucose positron emission tomography

GCTs:

Germ cell tumors

1H-MRS:

1H magnetic resonance spectroscopy

hCG:

Human chorionic gonadotropin

LDH:

Lactate dehydrogenase

LNs:

Lymph nodes

LT:

Leydig tumor

MRI:

Magnetic resonance imaging

NSGCTs:

Nonseminomatous germ cell tumors

PLAP:

Placental alkaline phosphatase

RTE:

Real-time sonoelastography

SCT:

Sertoli cell tumor

TL:

Testicular lymphomas

TM:

Testicular microlithiasis

UCAs:

Ultrasound contrast agents

US:

Ultrasonography

References

  1. La Vecchia C, et al. Cancer Mortality in Europe, 2000–2004, and an overview of trends since 1995. Ann Oncol. 2010;21:1323–60.

    Article  PubMed  Google Scholar 

  2. Siegel R, et al. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  3. Huyghe E, et al. Increasing incidence of testicular cancer worldwide: a review. J Urol. 2003;170:5–11.

    Article  PubMed  Google Scholar 

  4. Dieckmann KP, Pichlmeier U. Clinical epidemiology of testicular germ cell tumors. World J Urol. 2004;22:2–14.

    Article  PubMed  Google Scholar 

  5. Husmann DA. Cryptorchidism and its relationship to testicular neoplasia and microlithiasis. Urology. 2005;66:424–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dieckmann KP, Pichlmeier U. The prevalence of familial testicular cancer: an analysis of two patient populations and a review of the literature. Cancer. 1997;80:1954–60.

    Article  CAS  PubMed  Google Scholar 

  7. Weestergaard T, et al. Cancer risk in fathers and brothers of testicular cancer patients in Denmark. A population based study. Int J Cancer. 1996;66:627–31.

    Article  Google Scholar 

  8. Kanetsky PA, et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet. 2009;41:811–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kuczyk MA, et al. Alterations of the p53 tumour suppressor gene in carcinoma in situ of the testis. Cancer. 1996;78:1958–66.

    Article  CAS  PubMed  Google Scholar 

  10. Rapley EA, et al. UK Testicular Cancer Collaboration. A genome-wide association study of testicular germ cell tumor. Nat Genet. 2009;41:807–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jones A, et al. Is surveillance for stage I germ cell tumours of the testis appropriate outside a specialist centre? BJU Int. 1999;84:79–84.

    Article  CAS  PubMed  Google Scholar 

  12. Collette L, et al. Impact of the treating institution on survival of patients with “poor-prognosis” metastatic nonseminoma. European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Collaborative Group and the Medical Research Council Testicular Cancer Working Party. J Natl Cancer Inst. 1999;91:839–46.

    Article  CAS  PubMed  Google Scholar 

  13. Capitanio U, et al. Population-based study of perioperative mortality after retroperitoneal lymphadenectomy for nonseminomatous testicular germ cell tumors. Urology. 2009;74:373–7.

    Article  PubMed  Google Scholar 

  14. Mostofi K, et al. Tumors of the testis and paratesticular tissue. In: Eble JN, Sauter G, Epstein JI, Sesterhenn IA, editors. Pathology & genetics tumours of the urinary system and male genital organs. Lyon: IARC Press; 2004. p. 250–62.

    Google Scholar 

  15. Stoll S, et al. Incidental detection of impalpable testicular neoplasm by sonography. AJR Am J Roentgenol. 1986;146:349–50.

    Article  CAS  PubMed  Google Scholar 

  16. Dogra VS, et al. Sonography of the scrotum. Radiology. 2003;227:18–36.

    Article  PubMed  Google Scholar 

  17. Gatti JM, Stephenson RA. Staging of testis cancer. Combining serum markers, histologic parameters, and radiographic imaging. Urol Clin North Am. 1998;25:397–403.

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlich Y, et al. Serum tumor markers in testicular cancer. Urol Oncol. 2013;31:17–23.

    Google Scholar 

  19. Von Eyben FE. Laboratory markers and germ cell tumors. Crit Rev Clin Lab Sci. 2003;40:377–427.

    Article  Google Scholar 

  20. Weissbach L, et al. The value of tumor markers in testicular seminomas. Results of a prospective multicenter study. Eur Urol. 1997;32:16–22.

    CAS  PubMed  Google Scholar 

  21. Coffey J, et al. A discussion of the biology of testicular cancer and current concepts in the management of stage I and bilateral disease. Clin Oncol (R Coll Radiol). 2005;17:441–7.

    Article  CAS  Google Scholar 

  22. Fosså SD, et al. Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J Natl Cancer Inst. 2005;97:1056–66.

    Article  PubMed  Google Scholar 

  23. Pettersson A, et al. Age at surgery for undescended testis and risk of testicular cancer. N Engl J Med. 2007;356:1835–41.

    Article  CAS  PubMed  Google Scholar 

  24. DeCastro BJ, et al. A 5-year followup study of asymptomatic men with testicular microlithiasis. J Urol. 2008;179:1420–3.

    Article  PubMed  Google Scholar 

  25. Elzinga-Tinke JE, et al. The predictive value of testicular ultrasound abnormalities for carcinoma in situ of the testis in men at risk for testicular cancer. Int J Androl. 2010;33:597–603.

    CAS  PubMed  Google Scholar 

  26. Richenberg J, Brejt N. Testicular microlithiasis: is there a need for surveillance in the absence of other risk factors? Eur Radiol. 2012;22:2540–6.

    Article  PubMed  Google Scholar 

  27. Sobin LH, et al., editors. TNM classification of malignant tumours. 7th ed. New York: Wiley-Liss; 2009.

    Google Scholar 

  28. Brunereau L, et al. The role of imaging in staging and monitoring testicular cancer. Diagn Interv Imaging. 2012;93:310–8.

    Article  CAS  PubMed  Google Scholar 

  29. Aganovic L, Cassidy F. Imaging of the scrotum. Radiol Clin North Am. 2012;50:1145–65.

    Article  PubMed  Google Scholar 

  30. Frates MC, et al. Solid extratesticular masses evaluated with sonography: pathologic correlation. Radiology. 1997;204:43–6.

    CAS  PubMed  Google Scholar 

  31. Schwerk WB, et al. Testicular tumors: prospective analysis of real-time US patterns and abdominal staging. Radiology. 1987;164:369–74.

    CAS  PubMed  Google Scholar 

  32. Horstman WG, et al. Testicular tumors: findings with color Doppler US. Radiology. 1992;185:733–7.

    CAS  PubMed  Google Scholar 

  33. McDonald MW, et al. Testicular tumor ultrasound characteristics and association with histopathology. Urol Int. 2012;89:196–202.

    Article  PubMed  Google Scholar 

  34. Woodward PJ, et al. From the archives of the AFIP: tumors and tumorlike lesions of the testis: radiologic-pathologic correlation. Radiographics. 2002;22:189–216.

    Article  PubMed  Google Scholar 

  35. Kocakoc E, et al. Ultrasound evaluation of testicular neoplasms. Ultrasound Clin. 2007;2:27–44.

    Article  Google Scholar 

  36. Farkas LM, et al. High frequency of metastatic Leydig cell testicular tumours. Oncology. 2000;59:118–21.

    Article  CAS  PubMed  Google Scholar 

  37. Rich MA, Keating MA. Leydig cell tumors and tumors associated with congenital adrenal hyperplasia. Urol Clin North Am. 2000;27:519–28.

    Article  CAS  PubMed  Google Scholar 

  38. Holm M, et al. Leydig cell micronodules are a common finding in testicular biopsies from men with impaired spermatogenesis and are associated with decreased testosterone/LH ratio. J Pathol. 2003;199:378–86.

    Article  CAS  PubMed  Google Scholar 

  39. Gómez García I, et al. Sertoli cell tumor, a rare testicular tumor, our experience and review of the literature. Arch Esp Urol. 2010;63:392–5.

    PubMed  Google Scholar 

  40. Zicherman JM, et al. Best cases from the AFIP: primary diffuse large B-cell lymphoma of the epididymis and testis. Radiographics. 2005;25:243–8.

    Article  PubMed  Google Scholar 

  41. Pearl MS, Hill MC. Ultrasound of the scrotum. Semin Ultrasound CT MRI. 2007;28:225–48.

    Article  Google Scholar 

  42. Bertolotto M, Catalano O. Contrast-enhanced ultrasound: past, present, and future. Ultrasound Clin. 2009;4:339–67.

    Article  Google Scholar 

  43. Valentino M, et al. Role of contrast enhanced ultrasound in acute scrotal diseases. Eur Radiol. 2011;21:1831–40.

    Article  PubMed  Google Scholar 

  44. Lock G, et al. Early experience with contrast-enhanced ultrasound in the diagnosis of testicular masses: a feasibility study. Urology. 2011;77:1049–53.

    Article  PubMed  Google Scholar 

  45. Ophir J, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    CAS  PubMed  Google Scholar 

  46. Hall TJ, et al. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29:427–35.

    Article  PubMed  Google Scholar 

  47. Goddi A, et al. Real-time tissue elastography for testicular lesion assessment. Eur Radiol. 2012;22:721–30.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Salomon G, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54:1354–62.

    Article  PubMed  Google Scholar 

  49. Regini E, et al. Role of sonoelastography in characterising breast nodules: preliminary experience with 120 lesions. Radiol Med. 2010;115:551–62.

    Article  CAS  PubMed  Google Scholar 

  50. Aigner F, et al. Real-time sonoelastography for the evaluation of testicular lesions. Radiology. 2012;263:584–9.

    Article  PubMed  Google Scholar 

  51. Tsili AC, et al. MRI in the characterization and local staging of testicular neoplasms. AJR Am J Roentgenol. 2010;194:682–9.

    Article  PubMed  Google Scholar 

  52. Mohrs OK, et al. MRI of patients with suspected scrotal or testicular lesions: diagnostic value in daily practice. AJR Am J Roentgenol. 2012;199:609–15.

    Article  PubMed  Google Scholar 

  53. Tsili AC, et al. MRI in the histologic characterization of testicular neoplasms. AJR Am J Roentgenol. 2007;189:331–7.

    Article  Google Scholar 

  54. Cassidy FH, et al. MR imaging of scrotal tumors and pseudotumors. Radiographics. 2010;30:665–83.

    Article  PubMed  Google Scholar 

  55. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16:407–22.

    Article  PubMed  Google Scholar 

  56. Tsili AC, et al. Subtraction dynamic contrast-enhanced MRI for characterizing intratesticular mass lesions. Am J Roentgenol. 2013;200:578–85.

    Article  Google Scholar 

  57. Watanabe Y, et al. Scrotal disorders: evaluation of testicular enhancement patterns at dynamic contrast-enhanced subtraction MR imaging. Radiology. 2000;217:219–27.

    Article  CAS  PubMed  Google Scholar 

  58. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45:169–84.

    Article  PubMed  Google Scholar 

  59. Kantarci M, et al. Diagnostic performance of diffusion-weighted MRI in the detection of nonpalpable undescended testes: comparison with conventional MRI and surgical findings. AJR Am J Roentgenol. 2010;195:268–73.

    Article  Google Scholar 

  60. Maki D, et al. Diffusion-weighted magnetic resonance imaging in the detection of testicular torsion: feasibility study. J Magn Reson Imaging. 2011;34:1137–42.

    Article  PubMed  Google Scholar 

  61. Tsili AC, et al. Diffusion-weighted MR imaging of normal and abnormal scrotum: preliminary results. Asian J Androl. 2012;14:649–54.

    Article  PubMed  Google Scholar 

  62. Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol. 2007;17:1385–93.

    Article  PubMed  Google Scholar 

  63. Unal O, et al. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses. Eur J Radiol. 2011;77:490–4.

    Article  PubMed  Google Scholar 

  64. Rizvi SA, et al. Role of color Doppler ultrasonography in evaluation of scrotal swellings: patter of disease in 120 patients with review of the literature. Urol J. 2011;8:60–5.

    PubMed  Google Scholar 

  65. Yamaguchi M, et al. In vivo localized 1H MR spectroscopy of rat testes: stimulated echo acquisition mode (STEAM) combined with short TI inversion recovery (STIR) improves the detection of metabolite signals. Magn Reson Med. 2006;55:749–54.

    Article  CAS  PubMed  Google Scholar 

  66. Firat AK, et al. 1H magnetic resonance spectroscopy of the normal testis: preliminary findings. Magn Reson Imaging. 2008;26:215–20.

    Article  PubMed  Google Scholar 

  67. Glunde K, et al. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–48.

    CAS  PubMed  Google Scholar 

  68. Aaronson DS, et al. A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod. 2010;25:847–52.

    Article  PubMed  Google Scholar 

  69. Baleato González S, et al. Usefulness of MR spectroscopy of the testis: a new tool to assess infertility? 2013. doi:10.1594/ecr2013/C-1278.

  70. Wheeler Jr JS, et al. Inguinal node metastases from testicular tumors in patients with prior orchiopexy. J Urol. 1983;129:1245–7.

    PubMed  Google Scholar 

  71. Morton GC, Pearse M. Testicular cancer. In: Levitt SH, Purdy JA, Perez CA, Poortmans P, editors. Technical basis of radiation therapy: practical clinical applications. 5th ed. Berlin/Heidelberg: Springer; 2012. p. 1027–40.

    Google Scholar 

  72. Hilton S, et al. CT detection of retroperitoneal lymph node metastases in patients with clinical stage I testicular nonseminomatous germ cell cancer: assessment of size and distribution criteria. AJR Am J Roentgenol. 1997;169:521–5.

    Article  CAS  PubMed  Google Scholar 

  73. Sohaib SA, et al. Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours. Clin Radiol. 2009;64:362–7.

    Article  CAS  PubMed  Google Scholar 

  74. Koh DM, et al. Cross-sectional imaging of nodal metastases in the abdomen and pelvis. Abdom Imaging. 2006;31:632–43.

    Article  CAS  PubMed  Google Scholar 

  75. Roy C, et al. Value of diffusion-weighted imaging to detect small malignant pelvic lymph nodes at 3 T. Eur Radiol. 2010;20:1803–11.

    Article  PubMed  Google Scholar 

  76. Will O, et al. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol. 2006;7:52–60.

    Article  PubMed  Google Scholar 

  77. Huddart RA, et al. NCRI Testis Tumour Clinical Study Group. 18fluorodeoxyglucose positron emission tomography in the prediction of relapse in patients with high-risk, clinical stage I nonseminomatous germ cell tumors: preliminary report of MRC Trial TE22-the NCRI Testis Tumour Clinical Study Grou. J Clin Oncol. 2007;25:3090–5.

    Article  PubMed  Google Scholar 

  78. Krege S, et al. European consensus on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG)—part I. Eur Urol. 2008;53:473–96.

    Google Scholar 

  79. Paño B, et al. Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiographics. 2011;31:135–60.

    Article  PubMed  Google Scholar 

  80. Dalal PU, et al. Imaging of testicular germ cell tumours. Cancer Imaging. 2006;6:124–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Sohaib SA, et al. The role of imaging in the diagnosis, staging, and management of testicular cancer. AJR Am J Roentgenol. 2008;191:387–95.

    Article  PubMed  Google Scholar 

  82. De Santis M, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol. 2004;22:1034–9.

    Article  PubMed  Google Scholar 

  83. Lewis DA, et al. Positron emission tomography scans in postchemotherapy seminoma patients with residual masses: a retrospective review from Indiana University Hospital. J Clin Oncol. 2006;24:e54–5.

    Article  PubMed  Google Scholar 

  84. Hain SF, et al. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer. 2000;83:863–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Klepp O, et al. Risk-adapted treatment of clinical stage 1 non-seminoma testis cancer. Eur J Cancer. 1997;33:1038–44.

    Article  CAS  PubMed  Google Scholar 

  86. Rustin GJ, et al. National Cancer Research Institute Testis Cancer Clinical Studies Group. Randomized trial of two or five computed tomography scans in the surveillance of patients with stage I nonseminomatous germ cell tumors of the testis: Medical Research Council Trial TE08, ISRCTN56475197—the National Cancer Research Institute Testis Cancer Clinical Studies Group. J Clin Oncol. 2007;25:1310–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Baleato-González MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baleato-González, S., León-Mateos, L., Pérez-Santiago, M.I., Vilanova, J.C. (2014). Scrotum. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics