Skip to main content

Functional Imaging of Renal Cell Carcinoma

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

In this chapter, we review the role of functional imaging mainly in the major challenges related to renal masses. The first challenge is the histological differentiation of renal masses, while the second is the prognosis and monitoring of antiangiogenic targeted therapy of metastatic renal cell carcinoma (mRCC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AML:

Angiomyolipoma

ASL:

Arterial spin labelling

AUC:

Area under the curve

BF:

Blood flow

BOLD:

Blood oxygenation level dependent

BV:

Blood volume

ccRCC:

Clear cell renal cell carcinoma

CEUS:

Contrast-enhanced ultrasound

CT:

Computed tomography

D :

Perfusion-free diffusion

DCE:

Dynamic contrast enhanced

DWI:

Diffusion-weighted imaging

EPI-STAR:

echo-planar imaging and signal targeting with alternating radio-frequency

f :

Perfusion fraction

FDG:

18F-fluorodeoxyglucose

FLT:

18F-fluorothymidine

FMISO:

18F-fluoromisonidazole

GLUT-1:

Glucose transporter 1

HIF:

Hypoxia-inducible factor alfa

HU:

Hounsfield units

124 I-cG250 :

Girentuximab

IVIM:

Intravoxel incoherent motion

Ktrans :

Transfer rate of the blood from the vessels to the extravascular-extracellular space

MR:

Magnetic resonance

mRCC:

Metastatic renal cell carcinoma

MRS:

Magnetic resonance spectroscopy

mTOR:

Mammalian target of rapamycin inhibitors

MTT:

Mean transit time

MVD:

Microvessel density

OS:

Overall survival

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

pRCC:

Papillary renal cell carcinoma

RCC:

Renal cell carcinoma

ROC:

Receiver operating characteristic

ROI:

Region of interest

SI:

Signal intensity

SS EPI:

Single-shot echo-planar imaging

TCC:

Transitional cell carcinoma

TIC:

Time-intensity curves

TKIs:

Tyrosine kinase inhibitors

US:

Ultrasound

VEGF:

Vascular endothelial growth factor

VHL:

von Hippel–Lindau

References

  1. Ljungberg B, et al. Guidelines on renal cell carcinoma 2012. Eur Assoc Urol. 2010;58:398–406.

    Google Scholar 

  2. Cheville JC, et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol. 2003;27:612–24.

    Article  PubMed  Google Scholar 

  3. Bosniak MA. The Bosniak renal cyst classification: 25 years later. Radiology. 2012;262:781–5.

    Article  PubMed  Google Scholar 

  4. Nicolau C, et al. Renal complex cysts in adults: contrast-enhanced ultrasound. Abdom Imaging. 2011;36:742–52.

    Article  PubMed  Google Scholar 

  5. Hindman N, et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology. 2012;265:468–77.

    Article  PubMed  Google Scholar 

  6. Prando A, et al. Urothelial cancer of the renal pelvicaliceal system: unusual imaging manifestations. Radiographics. 2010;30:1533.

    Article  Google Scholar 

  7. Schmidbauer J, Remzi M, Mamarsadeghi M, Haitel A, Klingler HC, et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol. 2008;53:1003–11.

    Article  PubMed  Google Scholar 

  8. Blumenfeld AJ, et al. Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology. 2010;76:610–3.

    Article  PubMed  Google Scholar 

  9. Lawrentschuk N, et al. Functional imaging of renal cell carcinoma. Nat Rev Urol. 2010;7:258–66.

    Article  PubMed  Google Scholar 

  10. Notohamiprodjo M, et al. Diffusion and perfusion of the kidney. Eur J Radiol. 2010;76:337–47.

    Article  PubMed  Google Scholar 

  11. Fan L, et al. Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal parenchymal lesions with maximum diameter of 5cms. J Ultrasound Med. 2008;27:875–85.

    PubMed  Google Scholar 

  12. Jinzaki M, et al. Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr. 2000;24:835–42.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, et al. Renal masses: characterization with diffusion-weighted MR imaging – a preliminary experience. Radiology. 2008;247:458–64.

    Article  PubMed  Google Scholar 

  14. Vargas AH, et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology. 2012;264:779–88.

    Article  PubMed  Google Scholar 

  15. Chandarana H, et al. Histogram analysis of whole-lesion enhancement in differentiation clear cell from papillary subtype of renal cell cancer. Radiology. 2012;265:790–8.

    Article  PubMed  Google Scholar 

  16. Chandarana H, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol. 2012;12:688–96.

    Article  Google Scholar 

  17. Milles KA, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol. 2012;22:1430–41.

    Article  Google Scholar 

  18. Reiner CS, et al. Computed tomography perfusion imaging of renal cell carcinoma. Systematic comparison with histopathological angiogenic and prognostic markers. Invest Radiol. 2013;48:1–9.

    Article  Google Scholar 

  19. Delahunt B, et al. Grading system for clear cell renal cell carcinoma incorporating tumor necrosis. Am J Surg Pathol. 2013;37:311–22.

    Article  PubMed  Google Scholar 

  20. Yidiz E, et al. Relation of microvessel density with microvascular invasion, metastasis and prognosis in renal cell carcinoma. BJU Int. 2008;101:758–64.

    Article  Google Scholar 

  21. Garcia-Figueiras R, et al. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19.

    Article  PubMed  Google Scholar 

  22. Palmowski M, et al. Tumor perfusion assessed by dynamic contrast-enhanced MRI correlates to the grading of renal cell carcinoma: initial results. Eur J Radiol. 2010;74:e176–80.

    Article  PubMed  Google Scholar 

  23. Pedrosa I, et al. Arterial spin labelling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol. 2012;22:484–92.

    Article  PubMed  Google Scholar 

  24. Lanzman PS, et al. Arterial spin-labeling MR. Imaging of renal masses: correlation with histopathologic findings. Radiology. 2012;265:799–808.

    Article  PubMed  Google Scholar 

  25. Padhani AR, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Taouli B, et al. Renal lesions: characterization with diffusion weighted imaging versus contrast-enhanced imaging. Radiology. 2009;251:398–407.

    Article  PubMed  Google Scholar 

  27. Thoney H, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology. 2011;259:25–38.

    Article  Google Scholar 

  28. Doganay S, et al. Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malignant renal lesions. Clin Radiol. 2011;66:420–5.

    Article  CAS  PubMed  Google Scholar 

  29. Kilickesmez O, et al. Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr. 2009;33:828–33.

    Article  PubMed  Google Scholar 

  30. Wang H, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135–43.

    Article  PubMed  Google Scholar 

  31. Rosenkrantz AB, et al. Utility of the apparent diffusion coefficient for distinguishing clear cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol. 2010;195:W344–51.

    Article  PubMed  Google Scholar 

  32. Rheinheimer S, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters – initial experience. Eur J Radiol. 2012;81:e310–6.

    Article  CAS  PubMed  Google Scholar 

  33. Martínez de Llano SR, et al. Meta-analysis of the diagnostic performance of 18F-FDG PET in renal cell carcinoma. Rev Esp Med Nucl. 2007;26:19–29.

    Article  PubMed  Google Scholar 

  34. Ozülker T, et al. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun. 2011;32:265–72.

    Article  PubMed  Google Scholar 

  35. Kayani I, et al. Sequential FDG-PET/CT as a biomarker of response to Sunitinib in metastatic clear cell renal cancer. Clin Cancer Res. 2011;17:6021–8.

    Article  CAS  PubMed  Google Scholar 

  36. Namura K, et al. Impact of maximum Standardized Uptake Value (SUVmax) evaluated by 18-Fluoro-2-deoxy-Dglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer. 2010;10:667.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ueno D, et al. Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer. 2012;12:162.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kang DE, et al. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004;171:1806–9.

    Article  PubMed  Google Scholar 

  39. Majhail NS, et al. F-18 Fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol. 2003;21:3995–4000.

    Article  PubMed  Google Scholar 

  40. Park JW, et al. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int. 2009;103:615–9.

    Article  PubMed  Google Scholar 

  41. Nakatani K, et al. The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol. 2011;79:29–35.

    Article  PubMed  Google Scholar 

  42. Rodríguez Martínez de Llano S, et al. Clinical impact of (18)F-FDG PET in management of patients with renal cell carcinoma. Rev Esp Med Nucl. 2010;29:12–9.

    Article  PubMed  Google Scholar 

  43. Kumar R, et al. Role of FDG PET-CT in recurrent renal cell carcinoma. Nucl Med Commun. 2010;31:844–50.

    PubMed  Google Scholar 

  44. Divgi CR, et al. Preoperative characterization of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses. A phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  CAS  PubMed  Google Scholar 

  45. Divgi CR, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;10:187–94.

    Article  Google Scholar 

  46. Strong VE, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22:386–91.

    Article  PubMed  Google Scholar 

  47. Kotzerke J, et al. [1-11C] Acetate uptake is not increased in renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:884–8.

    Article  CAS  PubMed  Google Scholar 

  48. Oyama N, et al. 11C-acetate PET imaging for renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2009;36:422–7.

    Article  PubMed  Google Scholar 

  49. Min JH, et al. Assessment of renal lesions with blood oxygenation level-dependent MRI at 3T. Preliminary experience. AJR Am J Roentgenol. 2011;197:W489–94.

    Article  PubMed  Google Scholar 

  50. Bryan RN. Science to practice: is T2* enough to assess oxygenation? Radiology. 2012;262:375–7.

    Article  PubMed  Google Scholar 

  51. Diergarten T, et al. Functional characterization of prostate cancer by integrated magnetic resonance imaging and oxygenation changes during carbogen breathing. Invest Radiol. 2005;40:102–9.

    Article  PubMed  Google Scholar 

  52. Hallac RR, et al. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR Biomed. 2012;25:1321–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Süllentrop F, et al. In Vitro and In Vivo (1) H-MR Spectroscopic Examination of the Renal Cell Carcinoma. Int J Biomed Sci. 2012;8(2):94–108.

    PubMed  Google Scholar 

  54. Katz-Brull R, et al. Decreases in free cholesterol and fatty acid unsaturation in renal cell carcinoma demonstrated by breath-hold magnetic resonance spectroscopy. Am J Physiol Renal Physiol. 2005;288:F637–641.

    Article  CAS  PubMed  Google Scholar 

  55. Pedrosa I, et al. Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer. 2009;115:2334–45.

    Article  PubMed  Google Scholar 

  56. Van der Veldt AM, et al. Targeted therapies in renal cell cancer: recent developments in imaging. Targ Oncol. 2010;5:95–112.

    Article  Google Scholar 

  57. Shinagare AB, et al. Genitourinary imaging: part 2, role of imaging in medical management of advanced renal cell carcinoma. AJR Am J Roentgenol. 2012;1999:W554–6.

    Article  Google Scholar 

  58. Escudier B, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:vii65–vi71.

    Article  PubMed  Google Scholar 

  59. Pécuchet N, et al. New insights into the management of renal cell cancer. Oncology. 2012;84:22–31.

    Article  PubMed  Google Scholar 

  60. Nishino M, et al. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. AJR Am J Roentgenol. 2012;198:737–45.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Krajewski KM, et al. Comparison of four early posttherapy imaging changes in assessing outcome to vascular endothelial growth factor-targeted therapy in patients with advanced renal cell carcinoma. Eur Urol. 2011;59:856–62.

    Article  PubMed  Google Scholar 

  62. Oudard S, et al. Optimisation of the tumour response threshold in patients treated with everolimus for metastatic renal cell carcinoma: analysis of response and progression-free survival in the RECORD-1 study. Eur J Cancer. 2012;48:1512–8.

    Article  CAS  PubMed  Google Scholar 

  63. Thiam R, et al. Optimizing the size variation threshold for the CT evaluation of response in metastatic renal cell carcinoma treated with Sunitinib. Ann Oncol. 2010;21:936–41.

    Article  CAS  PubMed  Google Scholar 

  64. Schor-Bardach R, et al. Does arterial spin labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model. Radiology. 2009;3:731–42.

    Article  Google Scholar 

  65. Faria SC, et al. CT quantification of effects of thalidomide in patients with metastatic renal cell carcinoma. AJR Am J Roentgenol. 2007;189:378–84.

    Article  PubMed  Google Scholar 

  66. Flaherty KT, et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther. 2008;7:496–501.

    Article  CAS  PubMed  Google Scholar 

  67. Fournier LS, et al. Metastatic renal carcinoma: evaluation with dynamic contrast-enhanced CT. Radiology. 2010;256:511–8.

    Article  PubMed  Google Scholar 

  68. Han KS, et al. Pretreatment assessment of tumor enhancement on contrast-enhanced computed tomography as a potential predictor of treatment outcome in metastatic renal cell carcinoma patients receiving antiangiogenic therapy. Cancer. 2010;116:2332–42.

    CAS  PubMed  Google Scholar 

  69. Hillman GG, et al. Dynamic contrast-enhanced magnetic resonance imaging of vascular changes induced by Sunitinib in papillary renal cell carcinoma xenograft tumors. Neoplasia. 2009;11:910–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Zee YK, et al. Imaging angiogenesis of genitourinary tumors. Nat Rev Urol. 2010;7:69–82.

    Article  PubMed  Google Scholar 

  71. Cowey CL, et al. The loss of radiographic enhancement in primary renal cell carcinoma tumors following multitargeted receptor tyrosine kinase therapy is an additional indicator of response. Urology. 2010;75:1108–16.

    Article  PubMed  Google Scholar 

  72. Williams R, et al. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology. 2011;260:581–90.

    Article  PubMed  Google Scholar 

  73. De Bazelaire C, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma. Acad Radiol. 2005;12:347–57.

    Article  PubMed  Google Scholar 

  74. De Bazelaire C, et al. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK 787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res. 2008;14:5548–54.

    Article  PubMed  Google Scholar 

  75. Lamuraglia M, et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler Ultrasound. Eur J Cancer. 2006;42:2472–9.

    Article  CAS  PubMed  Google Scholar 

  76. Lassau N, et al. Metastatic renal cell carcinoma treated with Sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res. 2010;16:1216–25.

    Article  CAS  PubMed  Google Scholar 

  77. Leach MO, et al. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol. 2012;22:1465–78.

    Article  Google Scholar 

  78. Leen E, et al. Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials. Eur Radiol. 2012;22:1442–50.

    Article  PubMed  Google Scholar 

  79. Nelson DA, et al. Hypoxia and defective apoptosis drive genomic instability. Genes Dev. 2004;18:2095–107.

    Article  CAS  PubMed  Google Scholar 

  80. Goh V, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261:165–71.

    Article  PubMed  Google Scholar 

  81. Minamimoto R, et al. Evaluation of response to multikinase inhibitor in metastatic renal cell carcinoma by FDG PET/contrast-enhanced CT. Clin Nucl Med. 2010;35:918–23.

    Article  PubMed  Google Scholar 

  82. Revheim ME, et al. Combined positron emission tomography/computed tomography in Sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol). 2011;23:339–43.

    Article  CAS  Google Scholar 

  83. Vercellino L, et al. 18F-FDG PET/CT imaging for an early assessment of response to Sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm. 2009;24:137–44.

    Article  CAS  PubMed  Google Scholar 

  84. Liu G, et al. Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with Sunitinib malate. Clin Cancer Res. 2012;17:7634–44.

    Article  Google Scholar 

  85. Lawrentschuk N, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 2005;96:540–6.

    Article  PubMed  Google Scholar 

  86. Hugonnet F, et al. Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s Sunitinib, and therapeutic response: an 18F-Fluoromisonidazole PET/CT study. J Nucl Med. 2011;52:1048–55.

    Article  PubMed  Google Scholar 

  87. Murakami M, et al. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol. 2012;41:1593–600.

    CAS  PubMed  Google Scholar 

  88. Desar IM, et al. 111In-bevacizumab imaging of renal cell cancer and evaluation of neoadjuvant treatment with the vascular endothelial growth factor receptor inhibitor sorafenib. J Nucl Med. 2010;51:1707–15.

    Article  PubMed  Google Scholar 

  89. Middendorp M, et al. Initial experience with 18F-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann Nucl Med. 2010;24:441–6.

    Article  CAS  PubMed  Google Scholar 

  90. Maleddu A, et al. 11C-acetate PE for early prediction of Sunitinib response in metastatic renal cell carcinoma. Tumori. 2009;95:382–4.

    CAS  PubMed  Google Scholar 

  91. Oosterwijk-Wakka JC, et al. Effect of tyrosine kinase inhibitor treatment of renal cell carcinoma on the accumulation of carbonic anhydrase IX-specific chimeric monoclonal antibody cG250. BJU Int. 2010;107:118–25.

    Article  Google Scholar 

  92. Desar IM, et al. Functional MRI techniques demonstrate early vascular changes in renal cell cancer patients treated with Sunitinib: a pilot study. Cancer Imaging. 2011;11:259–65.

    Article  CAS  PubMed Central  Google Scholar 

  93. Gary R, et al. Correlation of pathological findings after brief neoadjuvant sorafenib with results of dynamic contrast-enhanced (DCE) and diffusion-weighted magnetic resonance imaging (DW-MRI) in patients with locally advanced or metastatic clear ell renal cell carcinoma J Clin Oncol. 2013;31 suppl 6;abstr 466.

    Google Scholar 

  94. Padhani AR. Diffusion magnetic resonance imaging in cancer patient management. BJU. 2011;108:1716–22.

    Article  Google Scholar 

  95. Schraml C, et al. Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment: Initial results. AJR Am J Roentgenol. 2009;193:W301–7.

    Article  PubMed  Google Scholar 

  96. Luna A, et al. Diffusion weighted imaging of the chest. Magn Reson Imaging Clin N Am. 2011;19:69–94.

    Article  PubMed  Google Scholar 

  97. Platzek I, et al. Whole-body MRI in follow-up of patients with renal cell carcinoma. Acta Radiol. 2010;51:581–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sebastià MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sebastià, C., Luna, A., Paredes, P., Nicolau, C. (2014). Functional Imaging of Renal Cell Carcinoma. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics