Skip to main content

The β-Lactam Antibiotics: Their Future in the Face of Resistance

  • Chapter
  • First Online:
Book cover Antimicrobials

Abstract

The search for new β-lactam antibacterial agents is a major challenge in medicinal and pharmaceutical chemistry. Methicillin-resistant Staphylococcus aureus (MRSA), pan-resistant Enterobacteriaceae, and pan-resistant nonfermenter bacteria are present day clinical scourges. New cephalosporins and carbapenems may solve this problem, but new monosulfactams and monocarbams also show promise. High-molecular-mass PBPs are envisioned as β-lactam targets. Further research keeps revealing interesting aspects about β-lactam resistance by β-lactamases, the existence of sentinel proteins, and the complexity of the cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen NE (2011) From vancomycin to oritavancin: the discovery and development of a novel lipoglycopeptide antibiotic. Anti-Infect Agents Med Chem 9:23–47. doi:1871-5214/10

    Google Scholar 

  • Amoroso A, Boudet J, Berzigotti S, Duval S, Teller N, Mengin-Lecreulx D, Luxen A, Simorre J-P, Joris B (2012) A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathog 8:e1002571. doi:10.1371/journal.ppat.1002571

    PubMed  CAS  Google Scholar 

  • Aoki N, Ishii Y, Tayeda K et al (2010) Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother 54:4582–4588. doi:10.1128/AAC.00511-10

    PubMed  CAS  Google Scholar 

  • Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR (2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci USA 107:18991–18996. doi:10.1073/pnas.1004304107

    PubMed  CAS  Google Scholar 

  • Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, Mathee K (2012) The regulatory repertoire of Pseudomonas aeruginosa AmpC β-lactamase regulator AmpR includes virulence genes. PLoS ONE 7:e34067. doi:10.1371/journal.pone.0034067

    PubMed  CAS  Google Scholar 

  • Balcewich MD, Reeve TM, Orlikow EA, Donald LJ, Vocadlo DJ, Mark BL (2010) Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible AmpC β-lactamase. J Mol Biol 400:998–1010. doi:10.1016/j.jmb.2010.05.040

    PubMed  CAS  Google Scholar 

  • Bassetti M, Nicolini L, Esposito S, Righi E, Viscoli C (2009) Current status of newer carbapenems. Curr Med Chem 16:564–575. doi:0929-8673/09

    PubMed  CAS  Google Scholar 

  • Belenky P, Collins JJ (2011) Microbiology. Antioxidant strategies to tolerate antibiotics. Science 334:915–916. doi:10.1126/science.1214823

    PubMed  CAS  Google Scholar 

  • Biondi S, Long S, Panunzio M, Qin WL (2011) Current trends in β-lactam based β-lactamases inhibitors. Curr Med Chem 18:4223–4236

    PubMed  CAS  Google Scholar 

  • Blais J, Lewis SR, Krause KM, Benton BM (2012) Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 56:1584–1587. doi:10.1128/AAC.05532-11

    PubMed  CAS  Google Scholar 

  • Bobba S, Ponnaluri VK, Mukherji M, Gutheil WG (2011) Microtiter plate-based assay for inhibitors of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:2783–2787. doi:10.1128/AAC.01327-10

    PubMed  CAS  Google Scholar 

  • Bodner MJ, Li R, Phelan RM, Freeman MF, Moshos KA, Lloyd EP, Townsend CA (2011) Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis. ChemBioChem 12:2159–2165. doi:10.1002/cbic.201100366

    PubMed  CAS  Google Scholar 

  • Boudreau MA, Fisher JF, Mobashery S (2012) Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51:2974–2990. doi:10.1021/bi300174x

    PubMed  CAS  Google Scholar 

  • Bush K, Courvalin P, Dantas G et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896. doi:10.1038/nrmicro2693

    PubMed  CAS  Google Scholar 

  • Bush K, Fisher JF (2011) Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria. Annu Rev Microbiol 65:455–478. doi:10.1146/annurev-micro-090110-102911

    PubMed  CAS  Google Scholar 

  • Bush K, Pucci MJ (2011) New antimicrobial agents on the horizon. Biochem Pharmacol 82:1528–1539. doi:10.1016/j.bcp.2011.07.077

    PubMed  CAS  Google Scholar 

  • Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot 64:413–425. doi:10.1038/ja.2011.44

    PubMed  CAS  Google Scholar 

  • Campbell J, Singh AK, Santa Maria JPJ, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116. doi:10.1021/cb100269f

    PubMed  CAS  Google Scholar 

  • Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in S. aureus. Antimicrob Agents Chemother 56:1810–1820. doi:10.1128/AAC.05938-11

    PubMed  CAS  Google Scholar 

  • Canton R, Lumb J (2011) Emerging resistance in Gram-negative pathogens and implications for clinical practice. Future Microbiol 6:19–22. doi:10.2217/fmb.10.150

    PubMed  Google Scholar 

  • Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, Su Y, Gerwick WH, Palsson BO (2012) Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS ONE 7:e33727. doi:10.1371/journal.pone.0033727

    PubMed  CAS  Google Scholar 

  • Chen H, Blizzard TA, Kim S et al (2011) Side chain SAR of bicyclic β-lactamase inhibitors (BLIs). 2. N-Alkylated and open chain analogs of MK-8712. Bioorg Med Chem Lett 21:4267–4270. doi:10.1016/j.bmcl.2011.05.065

    PubMed  CAS  Google Scholar 

  • Cottarel G, Wierzbowski J (2007) Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol 25:547–555. doi:10.1016/j.tibtech.2007.09.004

    PubMed  CAS  Google Scholar 

  • Desgranges S, Ruddle CC, Burke LP, McFadden TM, O’Brien JE, Fitzgerald-Hughes D, Humphreys H, Smyth TP, Devocelle M (2012) β-Lactam-host defence peptide conjugates as antibiotic prodrug candidates targeting resistant bacteria. RSC Adv 2:2480–2492. doi:10.1039/C2RA01351G

    CAS  Google Scholar 

  • Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201. doi:10.1128/CMR.00037-09

    PubMed  CAS  Google Scholar 

  • Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350. doi:10.1038/nchembio.559

    PubMed  CAS  Google Scholar 

  • El-Gamal MI, Oh CH (2010) Current status of carbapenem antibiotics. Curr Top Med Chem 10:1882–1897

    PubMed  CAS  Google Scholar 

  • Endimiani A, Doi Y, Bethel CR et al (2010) Enhancing resistance to cephalosporins in class C β-lactamases: impact of Gly214Glu in CMY-2. Biochemistry 49:1014–1023. doi:10.1021/bi9015549

    PubMed  CAS  Google Scholar 

  • Faridoon Hussein WM, Vella P, Islam NU, Ollis DL, Schenk G, McGeary RP (2012) 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 22:380–386. doi:10.1016/j.bmcl.2011.10.116

    PubMed  CAS  Google Scholar 

  • Fisher JF, Mobashery S (2010) Host-guest chemistry of the peptidoglycan. J Med Chem 53:4813–4829. doi:10.1021/jm100086u

    PubMed  CAS  Google Scholar 

  • Flanagan ME, Brickner SJ, Lall M et al (2011) Preparation, Gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med Chem Lett 2:385–390. doi:10.1021/ml200012f

    CAS  Google Scholar 

  • Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336:315–319. doi:10.1126/science.1219192

    PubMed  CAS  Google Scholar 

  • Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB (2009) Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of β-lactamases. J Biol Chem 284:29509–29513. doi:10.1074/jbc.M109.011262

    PubMed  CAS  Google Scholar 

  • Frei R, Breitbach AS, Blackwell HE (2012) 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew Chem Int Ed 51:5226–5229. doi:10.1002/anie.201109258

    CAS  Google Scholar 

  • Fuda C, Suvorov M, Vakulenko SB, Mobashery S (2004) The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem 279:40802–40806. doi:10.1074/jbc.M403589200

    PubMed  CAS  Google Scholar 

  • Fuda C, Hesek D, Lee M, Morio K, Nowak T, Mobashery S (2005) Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J Am Chem Soc 127:2056–2057. doi:10.1021/ja0434376

    PubMed  CAS  Google Scholar 

  • Fuda C, Hesek D, Lee M, Heilmayer W, Novak R, Vakulenko SB, Mobashery S (2006) Mechanistic basis for the action of new cephalosporin antibiotics effective against methicillin- and vancomycin-resistant Staphylococcus aureus. J Biol Chem 281:10035–10041. doi:10.1074/jbc.M508846200

    PubMed  CAS  Google Scholar 

  • Fuda C, Suvorov M, Shi Q, Hesek D, Lee M, Mobashery S (2007) Shared functional attributes between the mecA gene product of Staphylococcus sciuri and penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Biochemistry 46:8050–8057. doi:10.1021/bi7004587

    PubMed  CAS  Google Scholar 

  • Fuse S, Tsukamoto H, Yuan Y, Wang TS, Zhang Y, Bolla M, Walker S, Sliz P, Kahne D (2010) Functional and structural analysis of a key region of the cell wall inhibitor moenomycin. ACS Chem Biol 5:701–711. doi:10.1021/cb100048q

    PubMed  CAS  Google Scholar 

  • Gaballah A, Kloeckner A, Otten C, Sahl H-G, Henrichfreise B (2011) Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS ONE 6:e25129. doi:10.1371/journal.pone.0025129

    PubMed  CAS  Google Scholar 

  • Gampe CM, Tsukamoto H, Wang T-SA, Walker S, Kahne D (2011) Modular synthesis of diphospholipid oligosaccharide fragments of the bacterial cell wall and their use to study the mechanism of moenomycin and other antibiotics. Tetrahedron 67:9771–9778. doi:10.1016/j.tet.2011.09.114

    PubMed  CAS  Google Scholar 

  • Ghosh AS, Chowdhury C, Nelson DE (2008) Physiological functions of d-alanine carboxypeptidases in E. coli. Trends Microbiol 16:309–317. doi:10.1016/j.tim.2008.04.006

    PubMed  CAS  Google Scholar 

  • Han S, Zaniewski RP, Marr ES, Lacey BM, Tomaras AP, Evdokimov A, Miller JR, Shanmugasundaram V (2010) Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:22002–22007. doi:10.1073/pnas.1013092107

    PubMed  CAS  Google Scholar 

  • Han S, Caspers N, Zaniewski RP, Lacey BM, Tomaras AP, Feng X, Geoghegan KF, Shanmugasundaram V (2011) Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. J Am Chem Soc 133:20536–20545. doi:10.1021/ja208835z

    PubMed  CAS  Google Scholar 

  • Hanson BR, Neely MN (2012) Coordinate regulation of Gram-positive cell surface components. Curr Opin Microbiol 15:204–210. doi:10.1016/j.mib.2011.12.011

    PubMed  CAS  Google Scholar 

  • Hegde SS, Okusanya OO, Skinner R, Shaw J-P, Obedencio G, Ambrose PG, Blais J, Bhavnani SM (2012) Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob Agents Chemother 56:1578–1583. doi:10.1128/AAC.05382-11

    PubMed  CAS  Google Scholar 

  • Hennequin C, Robin F, Cabrolier N, Bonnet R, Forestier C (2012) Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother 56:288–294. doi:10.1128/AAC.00164-11

    PubMed  CAS  Google Scholar 

  • Henrichfreise B, Schiefer A, Schneider T et al (2009) Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 73:913–923. doi:10.1111/j.1365-2958.2009.06815.x

    PubMed  CAS  Google Scholar 

  • Higgins PG, Stefanik D, Page MG, Hackel M, Seifert H (2012) In vitro activity of the siderophore monosulfactam BAL30072 against meropenem-non-susceptible Acinetobacter baumannii. J Antimicrob Chemother 67:1167–1169. doi:10.1093/jac/dks009

    PubMed  CAS  Google Scholar 

  • Hirai Y, Takahata S, Yamada K, Ida T, Maebashi K (2011) Correlation of the antimicrobial activity of ME1036 with its binding affinities to the penicillin-binding proteins from Streptococcus pneumoniae strains. J Antibiot 64:741–746. doi:10.1038/ja.2011.76

    PubMed  CAS  Google Scholar 

  • Hirsch EB, Ledesma KR, Chang KT, Schwartz MS, Motyl MR, Tam VH (2012) In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem resistant Gram-negative bacteria. Antimicrob Agents Chemother, doi:10.1128/AAC.05927-11

    Google Scholar 

  • Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, Ma C (2012) Crystal structure of Staphylococcus aureus transglycosylase in complex with a Lipid II analog and elucidation of peptidoglycan synthesis mechanism. Proc Natl Acad Sci USA 109:6496–6501. doi:10.1073/pnas.1203900109

    PubMed  CAS  Google Scholar 

  • Huber J, Donald RG, Lee SH et al (2009) Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem Biol 16:837–848. doi:10.1016/j.chembiol.2009.05.012

    PubMed  CAS  Google Scholar 

  • Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE, Blanchard JS (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323:1215–1218. doi:10.1126/science.1167498

    PubMed  CAS  Google Scholar 

  • Inglis SR, Strieker M, Rydzik AM, Dessen A, Schofield CJ (2012) A boronic-acid-based probe for fluorescence polarization assays with penicillin binding proteins and β-lactamases. Anal Biochem 420:41–47. doi:10.1016/j.ab.2011.08.036

    PubMed  CAS  Google Scholar 

  • Kardos N, Demain AL (2011) Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 92:677–687. doi:10.1007/s00253-011-3587-6

    PubMed  CAS  Google Scholar 

  • Ke W, Bethel CR, Papp-Wallace KM, Pagadala SR, Nottingham M, Fernandez D, Buynak JD, Bonomo RA, van den Akker F (2012) Crystal structures of KPC-2 β-lactamase in complex with 3-NPBA and PSR-3-226. Antimicrob Agents Chemother 56:2713–2718. doi:10.1128/AAC.06099-11

    PubMed  CAS  Google Scholar 

  • Kim JS, Heo P, Yang TJ et al (2011) Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 55:5380–5383. doi:10.1128/AAC.00708-11

    PubMed  CAS  Google Scholar 

  • Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T (2008) Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2849–2854. doi:10.1128/AAC.00413-08

    PubMed  CAS  Google Scholar 

  • Koga T, Sugihara C, Kakuta M, Masuda N, Namba E, Fukuoka T (2009) Affinity of tomopenem (CS-023) for penicillin-binding proteins in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:1238–1241. doi:10.1128/AAC.01433-08

    PubMed  CAS  Google Scholar 

  • Kohanski MA, Depristo MA, Collins JJ (2010a) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37:311–320. doi:10.1016/j.molcel.2010.01.003

    PubMed  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010b) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435. doi:10.1038/nrmicro2333

    PubMed  CAS  Google Scholar 

  • Kollef MH, Golan Y, Micek ST, Shorr AF, Restrepo MI (2011) Appraising contemporary strategies to combat multidrug resistant Gram-negative bacterial infections–proceedings and data from the Gram-negative resistance summit. Clin Infect Dis 53(Suppl. 2):S33–S55. doi:10.1093/cid/cir475

    PubMed  Google Scholar 

  • Kumarasiri M, Llarrull LI, Borbulevych O, Fishovitz J, Lastochkin E, Baker BM, Mobashery S (2012) An amino-acid position at the crossroads of evolution of protein function: antibiotic-sensor domain of the BlaR1 protein from Staphylococcus aureus vs. class D β-lactamases. J Biol Chem 287:8232–8241. doi:10.1074/jbc.M111.333179

    PubMed  CAS  Google Scholar 

  • Lascols C, Hackel M, Hujer AM, Marshall SH, Bouchillon SK, Hoban DJ, Hawser SP, Badal RE, Bonomo RA (2012) Using nucleic acid microarrays to perform molecular epidemiology and detect novel β-lactamases: a snapshot of ESBLs throughout the world. J Clin Microbiol 50:1167–1169. doi:10.1128/JCM.06115-11

    Google Scholar 

  • Lee HH, Collins JJ (2012) Microbial environments confound antibiotic efficacy. Nat Chem Biol 8:6–9. doi:10.1038/nchembio.740

    CAS  Google Scholar 

  • Lemaire S, Fuda C, Van Bambeke F, Tulkens PM, Mobashery S (2008) Restoration of susceptibility of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics by acidic pH: Role of PBP 2a. J Biol Chem 283:12769–12776. doi:10.1074/jbc.M800079200

    PubMed  CAS  Google Scholar 

  • Lemaire S, Glupczynski Y, Duval V, Joris B, Tulkens PM, Van Bambeke F (2009) Activity of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages, keratinocytes) forms of methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Antimicrob Agents Chemother 53:2289–2297. doi:10.1128/AAC.01135-08

    PubMed  CAS  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. doi:10.1146/annurev.micro.112408.134306

    PubMed  CAS  Google Scholar 

  • Livermore DM (2006) Can β-lactams be re-engineered to beat MRSA? Clin Microbiol Infect 12(Suppl. 2):11–16. doi:10.1111/j.1469-0691.2006.01403.x

    PubMed  CAS  Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(Suppl. 1):i29–i36. doi:10.1093/jac/dkp255

    PubMed  CAS  Google Scholar 

  • Livermore DM (2012) Fourteen years in resistance. Int J Antimicrob Agents 39:283–294. doi:10.1016/j.ijantimicag.2011.12.012

    PubMed  CAS  Google Scholar 

  • Livermore DM, Mushtaq S, Ge Y (2010a) Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 65:1972–1974. doi:10.1093/jac/dkq248

    PubMed  CAS  Google Scholar 

  • Livermore DM, Mushtaq S, Warner M (2010b) Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gram-negative bacteria with characterized resistance mechanisms. J Antimicrob Chemother 65:2382–2395. doi:10.1093/jac/dkq310

    PubMed  CAS  Google Scholar 

  • Llarrull LI, Fisher JF, Mobashery S (2009) Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new β-lactams that meet the challenge. Antimicrob Agents Chemother 53:4051–4063. doi:10.1128/AAC.00084-09

    PubMed  CAS  Google Scholar 

  • Llarrull LI, Testero SA, Fisher JF, Mobashery S (2010) The future of the β-lactams. Curr Opin Microbiol 13:551–557. doi:10.1016/j.mib.2010.09.008

    PubMed  CAS  Google Scholar 

  • Llarrull LI, Toth M, Champion MM, Mobashery S (2011) Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem 286:38148–38158. doi:10.1074/jbc.M111.288985

    PubMed  CAS  Google Scholar 

  • Long DD, Aggen JB, Chinn J et al (2008) Exploring the positional attachment of glycopeptide/β-lactam heterodimers. J Antibiot 61:603–614. doi:10.1038/ja.2008.80

    PubMed  CAS  Google Scholar 

  • Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M (2011) A concise synthesis of a β-lactamase inhibitor. Org Lett 13:5480–5483. doi:10.1021/ol202195n

    PubMed  CAS  Google Scholar 

  • Mark BL, Vocadlo DJ, Oliver A (2011) Providing β-lactams a helping hand: targeting the AmpC β-lactamase induction pathway. Future Microbiol 6:1415–1427. doi:10.2217/fmb.11.128

    PubMed  CAS  Google Scholar 

  • Mima T, Kvitko BH, Rholl DA, Page MGP, Desarbre E, Schweizer HP (2011) In vitro activity of BAL30072 against Burkholderia pseudomallei. Int J Antimicrob Agents 38:157–159. doi:10.1016/j.ijantimicag.2011.03.019

    PubMed  CAS  Google Scholar 

  • Mizukami S, Watanabe S, Akimoto Y, Kikuchi K (2012) No-wash protein labeling with designed fluorogenic probes and application to real-time pulse-chase analysis. J Am Chem Soc 134:1623–1629. doi:10.1021/ja208290f

    PubMed  CAS  Google Scholar 

  • Mobashery S, Johnston M (1987) Inactivation of alanine racemase by β-chloro-l-alanine released enzymatically from amino acid and peptide C10-esters of deacetylcephalothin. Biochemistry 26:5878–5884

    PubMed  CAS  Google Scholar 

  • Mobashery S, Lerner SA, Johnston M (1986) Conscripting β-lactamase for use in drug delivery. Synthesis and biological activity of a cephalosporin C10-ester of an antibiotic dipeptide. J Am Chem Soc 108:1685–1686

    CAS  Google Scholar 

  • Moya B, Zamorano L, Juan C, Ge Y, Oliver A (2010) Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:3933–3937. doi:10.1128/AAC.00296-10

    PubMed  CAS  Google Scholar 

  • Mushtaq S, Warner M, Livermore D (2010) Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. J Antimicrob Chemother 65:266–270. doi:10.1093/jac/dkp425

    PubMed  CAS  Google Scholar 

  • My NH, Hirao H, Van DU, Morokuma K (2011) Computational studies of bacterial resistance to β-lactam antibiotics: mechanism of covalent inhibition of the penicillin-binding protein 2a (PBP2a). J Chem Inf Model 51:3226–3234. doi:10.1021/ci2004175

    PubMed  Google Scholar 

  • Nemmara VV, Dzhekieva L, Sarkar KS, Adediran SA, Duez C, Nicholas RA, Pratt RF (2011) Substrate specificity of low-molecular mass bacterial dd-peptidases. Biochemistry 50:10091–10101. doi:10.1021/bi201326a

    PubMed  CAS  Google Scholar 

  • Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C (2010) Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 49:8094–8104. doi:10.1021/bi100879m

    PubMed  CAS  Google Scholar 

  • Nordmann P, Boulanger AE, Poirel L (2012) NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrob Agents Chemother 56:2184–2186. doi:10.1128/AAC.05961-11

    PubMed  CAS  Google Scholar 

  • Page MGP, Dantier C, Desarbre E (2010) In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative bacilli. Antimicrob Agents Chemother 54:2291–2302. doi:10.1128/AAC.01525-09

    PubMed  CAS  Google Scholar 

  • Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A (2011) In vitro and in vivo properties of BAL30376, a β-lactam/dual β-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 55:1510–1519. doi:10.1128/AAC.01370-10

    PubMed  CAS  Google Scholar 

  • Perez F, Bonomo RA (2012) Can we really use β-lactam/β-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum β-lactamase-producing bacteria? Clin Infect Dis 54:175–177. doi:10.1093/cid/cir793

    PubMed  CAS  Google Scholar 

  • Phelan RM, Dipardo BJ, Townsend CA (2012) A high-throughput screen for the engineered production of β-lactam antibiotics. ACS Chem Biol 7:835–840. doi:10.1021/cb200504g

    PubMed  CAS  Google Scholar 

  • Piddock LJV (2012) The crisis of no new antibiotics-what is the way forward? Lancet Infect Dis 12:249–253. doi:10.1016/S1473-3099(11)70316-4

    PubMed  Google Scholar 

  • Potluri LP, de Pedro MA, Young KD (2012) Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol Microbiol 84:203–224. doi:10.1111/j.1365-2958.2012.08023.x

    PubMed  CAS  Google Scholar 

  • Reith J, Mayer C (2011) Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 92:1–11. doi:10.1007/s00253-011-3486-x

    PubMed  CAS  Google Scholar 

  • Rodriguez-Bano J, Navarro MD, Retamar P, Picon E, Pascual A (2012) β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 54:167–174. doi:10.1093/cid/cir790

    PubMed  CAS  Google Scholar 

  • Roemer T, Davies J, Giaever G, Nislow C (2012) Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56. doi:10.1038/nchembio.744

    CAS  Google Scholar 

  • Russo TA et al (2011) In vivo and in vitro activity of the siderophore monosulfactam BAL30072 against Acinetobacter baumannii. J Antimicrob Chemother 66:867–873. doi:10.1093/jac/dkr013

    PubMed  CAS  Google Scholar 

  • Schlesinger SR, Bruner B, Farmer PJ, Kim SK (2013) Kinetic characterization of a slow-binding inhibitor of Bla2: thiomaltol. J Enzyme Inhib Med Chem 28:137–142. doi:10.3109/14756366.2011.640632

    PubMed  CAS  Google Scholar 

  • Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM (2009) β-Lactams and β-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 35:81–108. doi:10.1080/10408410902733979

    PubMed  CAS  Google Scholar 

  • Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334:986–990. doi:10.1126/science.1209855

    PubMed  CAS  Google Scholar 

  • Shi Q, Meroueh SO, Fisher JF, Mobashery S (2011) A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall. J Am Chem Soc 133:5274–5283. doi:10.1021/ja1074739

    PubMed  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. doi:10.1101/cshperspect.a000414

    PubMed  Google Scholar 

  • Sliwa A, Dive G, Marchand-Brynaert J (2012a) 12- to 22-Membered bridged β-lactams as potential penicillin-binding protein inhibitors. Chem Asian J 7:425–434. doi:10.1002/asia.201100732

    PubMed  CAS  Google Scholar 

  • Sliwa A, Dive G, Zervosen A, Verlaine O, Sauvage E, Marchand-Brynaert J (2012b) Unprecedented inhibition of resistant penicillin binding proteins by bis-2-oxoazetidinyl macrocyles. Med Chem Commun 3:344–351. doi:10.1039/C2MD00251E

    CAS  Google Scholar 

  • Stachyra T, Pechereau MC, Bruneau JM, Claudon M, Frere JM, Miossec C, Coleman K, Black MT (2010) Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-β-lactam β-lactamase inhibitor. Antimicrob Agents Chemother 54:5132–5138. doi:10.1128/AAC.00568-10

    PubMed  CAS  Google Scholar 

  • Testero SA, O’Daniel PI, Shi Q, Lee M, Hesek D, Ishiwata A, Noll BC, Mobashery S (2009) Regiospecific syntheses of 6α-(1R-hydroxyoctyl) penicillanic acid and 6β-(1R-hydroxyoctyl) penicillanic acid as mechanistic probes of class D β-lactamases. Org Lett 11:2515–2518. doi:10.1021/ol900668k

    PubMed  CAS  Google Scholar 

  • Testero SA, Fisher JF, Mobashery S (2010) β-Lactam antibiotics. Burger’s Medicinal Chemistry, Drug Discovery and Development, 7th edn 7:259–404. doi: 10.1002/0471266949.bmc226

  • Tremblay LW, Fan F, Blanchard JS (2010) Biochemical and structural characterization of Mycobacterium tuberculosis β-lactamase with the carbapenems ertapenem and doripenem. Biochemistry 49:3766–3773. doi:10.1021/bi100232q

    PubMed  CAS  Google Scholar 

  • Tyrrell KL, Citron DM, Warren YA, Goldstein EJ (2012) In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob Agents Chemother 56:2194–2197. doi:10.1128/AAC.06274-11

    PubMed  CAS  Google Scholar 

  • Verma V, Testero SA, Amini K et al (2011) Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D β-lactamase from Acinetobacter baumannii. J Biol Chem 286:37292–37303. doi:10.1074/jbc.M111.280115

    PubMed  CAS  Google Scholar 

  • Villegas-Estrada A, Lee M, Hesek D, Vakulenko SB, Mobashery S (2008) Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA β-lactam antibiotics. J Am Chem Soc 130:9212–9213. doi:10.1021/ja8029448

    PubMed  CAS  Google Scholar 

  • Walsh TR, Toleman MA (2012) The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J Antimicrob Chemother 67:1–3. doi:10.1093/jac/dkr378

    PubMed  CAS  Google Scholar 

  • Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, Powell DR, Cichewicz RH (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948. doi:10.1021/np100142h

    PubMed  CAS  Google Scholar 

  • Worthington RJ, Bunders CA, Reed CS, Melander C (2012) Small molecule suppression of carbapenem resistance in NDM-1 producing Klebsiella pheumoniae. ACS Med Chem Lett 3: 357–361. doi: dx.doi.org/ 10.1021/ml200290p

    Google Scholar 

  • Wright GD (2012) Antibiotics: a new hope. Chem Biol 19:3–10. doi:10.1016/j.chembiol.2011.10.019

    PubMed  CAS  Google Scholar 

  • Xu H, Hazra S, Blanchard JS (2012) NXL104 irreversibly inhibits the β-lactamase from Mycobacterium tuberculosis. Biochemistry 51:4551–4557. doi:10.1021/bi300508r

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blázquez B, Hesek D, Lee MK, Llarrull LI, Boggess B, Oliver AG, Fisher JF, Mobashery S (2012) Inhibitors for bacterial cell-wall recycling. ACS Med Chem Lett 3:238–242. doi:org/10.1021/ml2002746

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Mobashery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leemans, E., Fisher, J.F., Mobashery, S. (2014). The β-Lactam Antibiotics: Their Future in the Face of Resistance. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_4

Download citation

Publish with us

Policies and ethics