Skip to main content

Gram-Negative Pathogens: Overview of Novel and Emerging Resistant Pathogens and Drugs

  • Chapter
  • First Online:
  • 3087 Accesses

Abstract

The rising prevalence of multiresistant Gram-negative bacterial infections has become a major clinical problem, as currently such infections comprise the majority of untreatable bacterial infections. The variety of resistance and transfer mechanisms and their rapid spread among Gram-negative bacteria constitutes a global infection control challenge, and an urgent need for development of new antimicrobials. Unfortunately, infection rates with multiresistant nonfermenters, such as Pseudomonas aeruginosa, Acinetobacter baumannii, or extended-spectrum β-lactamase producing Enterobacteriaceae and carbapenem resistant Enterobacteriaceae such as Klebsiella pneumoniae, are growing progressively while the pace of antibiotic drug development has slowed considerably during the last decade. This chapter reviews the main emerging Gram-negative resistant pathogens, their various resistance mechanisms, prevalence, risk factors, and summarizes the novel drugs being developed against them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbo A, Navon-Venezia S, Hammer-Muntz O et al (2005) Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis 11:22–29

    Article  PubMed  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    Article  PubMed  Google Scholar 

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  • Aeschlimann JR (2003) The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other Gram-negative bacteria. Pharmacother 23:916–924

    Article  CAS  Google Scholar 

  • Aloush V, Navon-Venezia S, Seigman-Igra Y et al (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48

    Article  PubMed  CAS  Google Scholar 

  • Ambler RP (1980) The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331

    Article  PubMed  CAS  Google Scholar 

  • Anderson DL (2008) Sitafloxacin hydrate for bacterial infections. Drugs Today (Barc) 44:489–501

    Article  CAS  Google Scholar 

  • Arruda EA, Marinho IS, Boulos M et al (1999) Nosocomial infections caused by multiresistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 20:620–623

    Article  PubMed  CAS  Google Scholar 

  • Baer M, Sawa T, Flynn P et al (2009) An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun 77:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Bassetti M, Nicolini L, Esposito S, Righi E, Viscoli C (2009) Current status of newer carbapenems. Curr Med Chem 16:564–575

    Article  PubMed  CAS  Google Scholar 

  • Beharry Z, Palzkill T (2005) Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. J Biol Chem 280:17786–17791

    Article  PubMed  CAS  Google Scholar 

  • Beno P, Krcmery V, Demitrovicova A (2006) Bacteraemia in cancer patients caused by colistin-resistant Gram-negative bacilli after previous exposure to ciprofloxacin and/or colistin. Clin Microbiol Infect 12:497–498

    Article  PubMed  CAS  Google Scholar 

  • Bergogne-Berezin E, Towner KJ (1996) Acinetobacter spp. as a nosocomial pathogen: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165

    PubMed  CAS  Google Scholar 

  • Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2):S49–S56

    Article  PubMed  CAS  Google Scholar 

  • Borer A, Saidel-Odes L, Riesenberg K et al (2009) Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 30:972–976

    Article  PubMed  Google Scholar 

  • Bou G, Martinez-Beltran J (2000) Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 44:428–432

    Article  PubMed  CAS  Google Scholar 

  • Bratu S, Brooks S, Burney S et al (2007) Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin Infect Dis 44:972–975

    Article  PubMed  Google Scholar 

  • Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165:1430–1435

    Article  PubMed  CAS  Google Scholar 

  • Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976

    Article  PubMed  CAS  Google Scholar 

  • Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    Article  PubMed  CAS  Google Scholar 

  • Butler MM, Williams JD, Peet NP et al (2010) Comparative in vitro activity profiles of novel bis-indole antibacterials against Gram-positive and Gram-negative clinical isolates. Antimicrob Agents Chemother 54:3974–3977

    Article  PubMed  CAS  Google Scholar 

  • Buynak JD, Ghadachanda VR, Vogeti L, Zhang H, Chen H (2005) Synthesis and evaluation of 3-(carboxymethylidene)- and 3-(carboxymethyl) penicillinates as inhibitors of beta-lactamase. J Org Chem 70:4510–4513

    Article  PubMed  CAS  Google Scholar 

  • Canton R, Coque TM (2006) The CTX-M β-lactamase pandemic. Curr Opin Microbiol 9:466–475

    Article  PubMed  CAS  Google Scholar 

  • CDC (2004) Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. MMWR Morb Mortal Wkly Rep 53:1063–1066

    Google Scholar 

  • CDC (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. Morb Mortal Wkly Rep 58:256–260

    Google Scholar 

  • Chahine EB, Ferrill MJ, Poulakos MN (2010) Doripenem: a new carbapenem antibiotic. Am J Health Syst Pharm 67:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Chang KC, Lin MF, Lin NT, Wu WJ, Kuo HY, Lin TY, Yang TL, Chen YC, Liou ML (2012) Clonal spread of multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Immunol Infect 45:37–42

    Article  PubMed  CAS  Google Scholar 

  • Curcio D (2011) Activity of a novel combination against multidrug-resistant nonfermenters: ceftazidime plus NXL104. Expert Rev Anti Infect Ther 9:173–176

    Article  PubMed  CAS  Google Scholar 

  • Da Silva G, Dijkshoorn L, van der Reijden T, van Strijen B, Duarte A (2007) Identification of widespread, closely related Acinetobacter baumannii isolates in Portugal as a subgroup of European clone II. Clin Microbiol Infect 13:190–195

    Article  PubMed  Google Scholar 

  • Daikos GL, Karabinis A, Paramythiotou E et al (2007) VIM-1-producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int J Antimicrob Agents 29:471–473

    Article  PubMed  CAS  Google Scholar 

  • Datta N (1969) Drug resistance and R factors in the bowel bacteria of London patients before and after admission to hospital. Br Med J 2:407–411

    Article  PubMed  CAS  Google Scholar 

  • Diekma DJ, Bollet C, Carlioz A et al (2002) Age-related trends in pathogen frequency and antimicrobial susceptibility of bloodstream isolates in North America SENTRY Antimicrobial Surveillance Program, 1997–2000. Int J Antimicrob Agents 20:412–418

    Article  Google Scholar 

  • Dozzo P, Moser HE (2008) New aminoglycoside antibiotics. Expert Opin Ther Pat 20:1321–1341

    Article  Google Scholar 

  • Drlica K, Malik M (2003) Fluoroquinolones: action and resistance. Curr Top Med Chem 3:249–282

    Article  PubMed  CAS  Google Scholar 

  • Emrich NC, Heisig A, Stubbings W, Labischinski H, Heisig P (2010) Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of Escherichia coli expressing combinations of defined mechanisms of fluoroquinolone resistance. J Antimicrob Chemother 65:2530–2533

    Article  PubMed  CAS  Google Scholar 

  • Eschenburg S, Priestman M, Schonbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamineenolpyruvyltransferase (MurA) is essential for product release. J Biol Chem 280:3757–3763

    Article  PubMed  CAS  Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC) (2008) Annual epidemiological report on communicable diseases in Europe 2008. Stockholm, Sweden.http://ecdc.europa.eu/en/publications/Publications/0812_SUR_Annual_Epidemiological_Report_2008.pdf. Accessed March 2012

  • European Centre for Disease Prevention and Control/European Medicines Agency Joint Working Group (ECDC/EMEA) (2009) The bacterial challenge: time to react. www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf. Accessed March 2012

  • Falagas ME, Bliziotis IA, Kasiakou SK et al (2005) Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infect Dis 5:24

    Article  PubMed  Google Scholar 

  • Falagas ME, Kopterides P (2006) Risk factors for the isolation of multi-drugresistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect 64:7–15

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Rafailidis PI, Kofteridis D, Virtzili D, Chelvatzoglou FC et al (2007) Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother 60:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Rafailidis PI, Matthaiou DK (2010) Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Update 13:132–138

    Article  CAS  Google Scholar 

  • Falagas ME, Rafailidis PI, Matthaiou DK, Virtzili S, Nikita D, Michalopoulos A (2008) Pandrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents 32:450–454

    Article  PubMed  CAS  Google Scholar 

  • Farrel DJ, Morrissey I, De Rubeis D et al (2003) A UK study of the antimicrobial susceptibility of bacterial pathogen causing urinary tract infection. J Infect 46:94–100

    Article  Google Scholar 

  • Fluit AC, Verhoef J, Schmitz FJ (2001) European SENTRY participants. frequency of isolation and antimicrobial resistance of Gram-negative and gram-positive bacteria from patients in intensive care units of 25 European university hospitals participating in the European arm of the SENTRY Antimicrobial Surveillance Program 1997–1998. Eur J Clin Microbiol Infect Dis 20:617–625

    PubMed  CAS  Google Scholar 

  • Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54,731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clin Microbiol Infect 12:315–321

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Penuela E, Aznar E, Alarcon T, Lopez-Brea M (2006) Susceptibility pattern of Acinetobacter baumannii clinical isolates in Madrid vs Hong Kong. Rev Esp Quimioter 19:45–50

    PubMed  CAS  Google Scholar 

  • Gaynes R, Edwards JR (2005) National nosocomial infections surveillance system. Overview of nococomial infections caused by Gram-negative bacilli. Clin Infect Dis 41:848–854

    Article  PubMed  Google Scholar 

  • Georges B, Conil JM, Dubouix A, Archambaud M, Bonnet E, Saivin S et al (2006) Risk of emergence of Pseudomonas aeruginosa resistance to beta-lactam antibiotics in intensive care units. Crit Care Med 34:1636–1641

    Article  PubMed  CAS  Google Scholar 

  • Giamarellou H, Kanellakopoulou K (2008) Current Therapies for Pseudomonas aeruginosa. Crit Care Clin 24:261–278

    Article  PubMed  CAS  Google Scholar 

  • Giske CG, Monnet DL, Cars O, Carmeli Y (2008) Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 52:813–821

    Article  PubMed  CAS  Google Scholar 

  • Go ES, Urban C, Burns J, Kreiswirth B et al (1994) Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 344:1329–1332

    Article  PubMed  CAS  Google Scholar 

  • Goa KL, Noble S (2003) Panipenem/betamipron. Drugs 63(9):913–926

    Article  PubMed  CAS  Google Scholar 

  • Gomi K, Fujimura S, Fuse K et al (2011) Antibacterial activity of carbapenems against clinical isolates of respiratory bacterial pathogens in the northeastern region of Japan in 2007. J Infect Chemother 17:200–206

    Article  PubMed  CAS  Google Scholar 

  • Gordon KA, Jones RN; SENTRY participant groups (Europe, Latin America, North America) (2003) Susceptibility patterns of orally administered antimicrobials among urinary tract infection pathogens from hospitalized patients in North America: comparison report to Europe and Latin America. results from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 45:295–301

    Article  CAS  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Grossman TH, Starosta AL, Fyfe C et al (2012) Target-and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother. Feb 21, 2012 (Epub ahead of print)

    Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Henrichfreise B, Wiegand I, Pfister W et al (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EB, Ledesma KR, Chang KT, Motyl MR, Tam VH (2010) In vitro activity of MK-7655 in combination with imipenem (IPM) against carbapenem resistant Gram-negative bacteria. Paper presented at 50th interscience conference on antimicrobial agents and chemotherapy, Boston, MA, USA, 12–15 September 2010

    Google Scholar 

  • Hornsey M, Ellington MJ, Doumith M et al (2010) AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 65:1589–1593

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Huang X, Deng Y, He L et al (2012) Dissemination of fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob Agents Chemother Jan 9 (Epub ahead of print)

    Google Scholar 

  • Iredell J, Thomas L, Power D, Mendes E (2007) Tigecycline resistance in Australian antibiotic-resistant Gram-negative bacteria. J Antimicrob Chemother 59:816–818

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Eto M, Mano Y, Tateda K, Yamaguchi K (2010) In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 54:3625–3629

    Google Scholar 

  • Jacoby G, Medeiros A (1991) More extended-spectrum β-lactamases. Antimicrob Agents Chemother 35:1697–1704

    Article  PubMed  CAS  Google Scholar 

  • Jamieson CE, Lambert PA, Simpson IN (2003) In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against Gram-positive and Gram-negative organisms. Antimicrob Agents Chemother 47:2615–2618

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Lu P, Huang W et al (2010) A multicenter, randomized controlled clinical study on biapenem and imipenem/cilastatin injection in the treatment of respiratory and urinary tract infections. Chemotherapy 56:285–290

    Article  PubMed  CAS  Google Scholar 

  • Jones RN, Deshpande L, Fritsche TR, Sader HS (2004) Determination of epidemic clonality among multidrug-resistant strains of Acinetobacter spp. and Pseudomonas aeruginosa in the MYSTIC Programme (USA, 1999–2003). Diagn Microbiol Infect Dis 49:211–216

    Article  PubMed  CAS  Google Scholar 

  • Kallel H, Bahloul M, Hergafi L, Akrout M et al (2006) Colistin as a salvage therapy for nosocomial infections caused by multidrug-resistant bacteria in the ICU. Int J Antimicrob Agents 28:366–369

    Article  PubMed  CAS  Google Scholar 

  • Karlowsky JA, Jones ME, Thornsberry C et al (2003) Trends in antimicrobial susceptibilities among Enterobacteriaceae isolate from hospitalized patients in the United States from 1998 to 2001. Antimicrob Agents Chemother 47:1672–1680

    Article  PubMed  CAS  Google Scholar 

  • Kaur K, Adediran SA, Lan MJ, Pratt RF (2003) Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 42:1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Keeney D, Ruzin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 13:1–6

    Article  PubMed  CAS  Google Scholar 

  • Keller MA, Stiehm ER (2000) Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13:602–614

    Article  PubMed  CAS  Google Scholar 

  • Kitchel B, Rasheed JK, Patel JB et al (2009) Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents and Chemother 53:3365–3370

    Article  CAS  Google Scholar 

  • Klevens RM, Edwards JR, Richards CL et al (2007) Estimating healthcare-associated infections in U.S. hospitals. Public Health Rep 122:160–166

    PubMed  Google Scholar 

  • Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T (2008) Potent In vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2849–2854

    Article  PubMed  CAS  Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  PubMed  CAS  Google Scholar 

  • Lagacé-Wiens PR, Tailor F, Simner P et al (2011) Activity of NXL104 in combination with β-lactams against genetically characterized Escherichia coli and Klebsiella pneumoniae isolates producing class A extended-spectrum β-lactamases and class C β-lactamases. Antimicrob Agents Chemother 55:2434–2437

    Google Scholar 

  • Landman D, Kelly P, Bäcker M et al (2011) Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J Antimicrob Chemother 66:332–334

    Article  PubMed  CAS  Google Scholar 

  • Leavitt A, Navon-Venezia S, Chmelnitsky I et al (2007) Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother 51:3026–3029

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Yong D, Yum JH et al (2006) Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 56:305–312

    Article  PubMed  CAS  Google Scholar 

  • Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Patel G, Huprikar S, Calfee DP, Jenkins SG (2009) Decreased susceptibility to polymyxin B during treatment for carbapenem-resistant Klebsiella pneumoniae infection. J Clin Microbiol 47:1611–1612

    Article  PubMed  Google Scholar 

  • Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(Suppl 1):i29–i36

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Hope R, Brick G, et al (2008) Non-susceptibility trends among Enterobacteriaceae from bacteraemias in the UK and Ireland,2001–06. J Antimicrob Chemother 62(Suppl 2):ii41–ii54

    Google Scholar 

  • Livermore DM, Mushtaq S, Warner M (2009) Activity of the anti-MRSA carbapenem razupenem (PTZ601) against Enterobacteriaceae with defined resistance mechanisms. J Antimicrob Chemother 64:330–335

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Mushtaq S, Warner M (2010) Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gram-negative bacteria with characterized resistance mechanisms. J Antimicrob Chemother 65:2382–2395

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Mushtaq S, Warner M, Zhang JC et al (2011) Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 66:48–53

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Woodford N (2006) The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14:413–420

    Article  PubMed  CAS  Google Scholar 

  • Lolans KT, Rice W, Munoz-Price LS, Quinn JP (2006) Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother 50:2941–2945

    Article  PubMed  CAS  Google Scholar 

  • MacNeil IA, Tiong CL, Minor C et al (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308

    PubMed  CAS  Google Scholar 

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281

    Article  PubMed  CAS  Google Scholar 

  • Magnet S, Courvalin P, Lambert T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380

    Article  PubMed  CAS  Google Scholar 

  • Mahgoub S, Ahmed J, Glatt AE (2002) Completely resistant Acinetobacter baumannii strains. Infect Control Hosp Epidemiol 23:477–479

    Article  PubMed  Google Scholar 

  • Mansoor UF, Vitharana D, Reddy PA et al (2011) Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett 21:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Maragakis LL (2010) Recognition and prevention of multidrug-resistant Gram-negative bacteria in the intensive care unit. Crit Care Med 38(Suppl. 8):S345–S351

    Article  PubMed  CAS  Google Scholar 

  • Maragakis LL, Perl TM (2008) Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 46:1254–1263

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Formento C, Pontet J et al (2007) Prospective study of risk factors for ventilator-associated pneumonia caused by Acinetobacter species. J Crit Care 22:18–27

    Article  PubMed  Google Scholar 

  • Moland ES, Hanson ND, Black JA et al (2009) Prevalence of newer β-lactamases in Gram-negative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol 44:3318–3324

    Article  CAS  Google Scholar 

  • Mortensen NP, Fowlkes JD, Sullivan CJ et al (2009) Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. Langmuir 25:3728–3733

    Article  PubMed  CAS  Google Scholar 

  • Moya B, Zamorano L, Juan C, Pérez JL, Ge Y, Oliver A (2010) Activity of a new cephalosporin, CXA-101 (FR264205), against β-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother 54:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Mushtaq S, Warner M, Livermore D (2010) Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. J Antimicrob Chemother 65:266–270

    Article  PubMed  CAS  Google Scholar 

  • Naas TS, Kernbaum S, Allali S, Nordmann P (2007) Multidrug-resistant Acinetobacter baumannii, Russia. Emerg Infect Dis 13:669–671

    Article  PubMed  CAS  Google Scholar 

  • National Institute of Allergy and Infectious Diseases (NIAID) (2006) The problem of antimicrobial resistance. http://www.idph.state.ia.us/adper/common/pdf/abx/tab9_niaid_resistance.pdf. Accessed March 2012

  • National Nosocomial Infections Surveillance (NNIS) (2004) System report, data summary from January 1992 through June 2004. Am J Infect Control 32:470–485

    Article  Google Scholar 

  • Navon-Venezia S, Ben-Ami R, Carmeli Y (2005) Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis 18:306–313

    Article  PubMed  Google Scholar 

  • Nemec A, Dolzani L, Brisse S et al (2004) Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J Med Microbiol 53:1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Obara M, Nakae T (1991) Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus. J Antimicrob Chemother 28:791–800

    Article  PubMed  CAS  Google Scholar 

  • Ohmagari N, Hanna H, Graviss L et al (2005) Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer 104:205–212

    Article  PubMed  Google Scholar 

  • Oliver A, Canton R, Campo P et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Page MG, Dantier C, Desarbre E (2010) In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother 54:2291–2302

    Article  PubMed  CAS  Google Scholar 

  • Page MG, Dantier C, Desarbre E, Gaucher B et al (2011) In vitro and in vivo properties of BAL30376, a β-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 55:1510–1519

    Article  PubMed  CAS  Google Scholar 

  • Paramythiotou E, Lucet JC, Timsit JF et al (2004) Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 38:670–677

    Article  PubMed  Google Scholar 

  • Patel G, Huprikar S, Factor SH et al (2008) Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106

    Article  PubMed  Google Scholar 

  • Peleg AY, Bell JM, Hofmeyr A, Wiese P (2006) Inter-country transfer of Gram-negative organisms carrying the VIM-4 and OXA-58 carbapenem-hydrolysing enzymes. J Antimicrob Chemother 57:794–795

    Article  PubMed  CAS  Google Scholar 

  • Peleg AY, Paterson DL (2006) Multidrug-resistant Acinetobacter: a threat to the antibiotic era. Intern Med J 36:479–482

    Article  PubMed  CAS  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    Article  PubMed  CAS  Google Scholar 

  • Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10):e1001067

    Article  PubMed  CAS  Google Scholar 

  • Peterson LR (2009) Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis 49:992–993

    Article  PubMed  Google Scholar 

  • Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836

    Article  PubMed  CAS  Google Scholar 

  • Quale J, Shah N, Kelly P et al (2011) Activity of polymyxin B and the novel polymyxin analogue CB-182, 804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist, Dec 23, 2011 (Epub ahead of print)

    Google Scholar 

  • Ribera A, Ruiz J, Vila J (2003) Presence of the Tet M determinant in a clinical isolate of Acinetobacter baumannii. Antimicrob Agents Chemother 47:2310–2312

    Article  PubMed  CAS  Google Scholar 

  • Rice LB (2006) Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2):S100–S105

    Article  PubMed  CAS  Google Scholar 

  • Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081

    Article  PubMed  Google Scholar 

  • Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Hawser S, Islam K (2003) Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett 13:4217–4221

    Article  PubMed  CAS  Google Scholar 

  • Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and metaanalysis. J Antimicrob Chemother 60:913–920

    Article  PubMed  CAS  Google Scholar 

  • Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S et al (2008) Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 52:102810–102833

    Article  CAS  Google Scholar 

  • Scott P, Deye G, Srinivasan A, Murray C et al (2007) An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis 44:1577–1584

    Article  PubMed  CAS  Google Scholar 

  • Seifert H, Stefanik D, Wisplinghoff H (2006) Comparative in vitro activities of tigecycline and 11 other antimicrobial agents against 215 epidemiologically defined multidrug-resistant Acinetobacter baumannii isolates. J Antimicrob Chemother 58:1099–1100

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Sobia F, Singh A et al (2009) Beta-lactams and beta-lactamase inhibitors in current or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 35:81–108

    Article  PubMed  CAS  Google Scholar 

  • Shakil S, Khan R, Zarrilli R, Khan AU (2008) Aminoglycosides versus bacteria-a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15:5–14

    Article  PubMed  CAS  Google Scholar 

  • Siroy A, Molle V, Lemaitre-Guillier C et al (2005) Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob Agents Chemother 49:4876–4883

    Article  PubMed  CAS  Google Scholar 

  • Speert DP, Campbell ME, Davidson AG, Wong LT (1993) Pseudomonas aeruginosa colonization of the gastrointestinal tract in patients with cystic fibrosis. J Infect Dis 167:226–229

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA (2011) Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci 1241:122–152

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:826–830

    Article  PubMed  CAS  Google Scholar 

  • Talbot GH (2010) The antibiotic development pipeline for multidrug-resistant Gram-negative bacilli: current and future landscapes. Infect Control Hosp Epidemiol 31(Suppl. 1):S55–S58

    Article  PubMed  Google Scholar 

  • Tam VH, Kai-Tai Chang KT, Abdelraouf K et al (2010) Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Thomas KD, Adhikari AV, Chowdhury IH et al (2011) Design, synthesis and docking studies of quinoline-oxazolidinone hybrid molecules and their antitubercular properties. Eur J Med Chem 46:4834–4845

    Article  PubMed  CAS  Google Scholar 

  • Titelman E, Karlsson IM, Ge Y, Giske CG (2011) In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 70:137–141

    Article  PubMed  CAS  Google Scholar 

  • Török ME, Chapman AL, Lessing MP, Sanderson F, Seaton RA (2010) Outpatient parenteral antimicrobial therapy: recent developments and future prospects. Curr Opin Investig Drugs 11:929–939

    PubMed  Google Scholar 

  • Tzouvelekis LS, Gazouli M, Prinarakis EE, Tzelepi E, Legakis NJ (1997) Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone ro 48–1220 against beta-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 41:475–477

    PubMed  CAS  Google Scholar 

  • Unal S, Garcia-Rodriguez JA (2005) Activity of meropenem and comparators against Pseudomonas aeruginosa and Acinetobacter spp. isolated in the MYSTIC Program, 2002–2004. Diagn Microbiol Infect Dis 53:265–271

    Article  PubMed  CAS  Google Scholar 

  • Urbanowski ML, Lykken GL, Yahr TL (2005) A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc Natl Acad Sci USA 102:9930–9935

    Article  PubMed  CAS  Google Scholar 

  • Vaara M, Fox J, Loidl G et al (2008) Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother 52:3229–3236

    Article  PubMed  CAS  Google Scholar 

  • Vila J, Ruiz J, Goni P, Jimenez de Anta T (1997) Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 39:757–762

    Article  PubMed  CAS  Google Scholar 

  • Vila-Farres X, Garcia de la Maria C, López-Rojas R et al (2012) In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clin Microbiol Infect 18:383–387

    Article  PubMed  CAS  Google Scholar 

  • Wachino J, Yamane K, Suzuki S, Kimura K, Yl Arakawa (2010) Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother 54:3061–3064

    Article  PubMed  CAS  Google Scholar 

  • Walther-Rasmussen J, Hoiby N (2007) Class A carbapenemases. J Antimicrob Chemother 60:470–482

    Article  PubMed  CAS  Google Scholar 

  • Xiao XY, Hunt DK, Zhou J et al (2012) Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 55:597–605

    Article  PubMed  CAS  Google Scholar 

  • Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Yong D, Toleman MA, Giske CG et al (2009) Characterization of a new metallo-β-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  PubMed  CAS  Google Scholar 

  • Zavascki AP, Barth AL, Fernandes JF et al (2006) Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-beta-lactamase-mediated multidrug resistance: a prospective observational study. Crit Care 10:R114

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliora Z. Ron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paitan, Y., Ron, E.Z. (2014). Gram-Negative Pathogens: Overview of Novel and Emerging Resistant Pathogens and Drugs. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_3

Download citation

Publish with us

Policies and ethics