Skip to main content

Flash Flood Forecasting Based on Rainfall Thresholds

  • Reference work entry
  • First Online:

Abstract

Extreme rainstorms often trigger catastrophic flash floods in Europe and in several areas of the world. Despite notable advances in weather forecasting, most operational early warning systems for extreme rainstorms and flash floods are based on rainfall observations derived from rain gauge networks and weather radars, rather than on forecasts. As a result, warning lead times are bounded to few hours, and warnings are usually issued when the event is already taking place.

This chapter illustrates three recently developed systems that use information on observed and forecasted precipitation to issue flash flood warnings. The first approach is an indicator for heavy precipitation events, developed to complement the flood early warning of the European Flood Awareness System (EFAS) and targeted to short and intense events, possibly leading to flash flooding in small catchments. The system is based on the European Precipitation Index Based on Simulated Climatology (EPIC), which in EFAS is computed using COSMO-LEPS ensemble weather forecasts and a 20-year consistent reforecast dataset.

The second system is a flash flood early warning tool developed based on precipitation statistics. A total of 759 sub-catchments in southern Switzerland is considered. Intensity-duration-frequency (IDF) curves for each catchment have been calculated based on gridded precipitation products for the period 1961–2012 and gridded reforecast of the COSMO-LEPS for the period 1971–2000. The different IDF curves at the catchment level in combination with precipitation forecasts are the basis for the flash flood early warning tool. The forecast models used are COSMO-2 (deterministic, updated every 3 h and with a lead time of 24 h) and COSMO-LEPS (probabilistic, 16-member and with a lead time of 5 days).

The third system (FF-EWS) uses probabilistic high-resolution precipitation products generated from the observations of the weather radar network to monitor situations prone to trigger flash floods in Catalonia (NE Spain). These ensemble precipitation estimates and nowcasts are used to calculate the basin-aggregated rainfall (that is, the rainfall accumulated upstream of each point of the drainage network), which is the variable used to characterize the potential flash flood hazard.

Examples of successful and less skilful forecasts for all three systems are shown and commented to highlight pros and cons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACA, Recomanacions tècniques per als estudis d’inundabilitat d’àmbit local (Agència Catalana de l’Aigua, Barcelona, 2003), p. 106

    Google Scholar 

  • N. Addor, S. Jaun, F. Fundel, M. Zappa, An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. Hydrol. Earth Syst. Sci. 15, 2327–2347 (2011). https://doi.org/10.5194/hess-15-2327-2011

    Article  Google Scholar 

  • J.R.A. Aldrich, Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3), 162–176 (1997)

    Article  Google Scholar 

  • L. Alfieri, J. Thielen, A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl. 22(1), 3–13 (2015). https://doi.org/10.1002/met.1328

    Article  Google Scholar 

  • L. Alfieri, D. Velasco, J. Thielen, Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv. Geosci. 29, 69–75 (2011). https://doi.org/10.5194/adgeo-29-69-2011

    Article  Google Scholar 

  • L. Alfieri, J. Thielen, F. Pappenberger, Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J. Hydrol. 424–425, 143–153 (2012). https://doi.org/10.1016/j.jhydrol.2011.12.038

    Article  Google Scholar 

  • L. Alfieri, F. Pappenberger, F. Wetterhall, The extreme runoff index for flood early warning in Europe. Nat. Hazards Earth Syst. Sci. 14(6), 1505–1515 (2014). https://doi.org/10.5194/nhess-14-1505-2014

    Article  Google Scholar 

  • F. Ament, T. Weusthoff, M. Arpagaus, Evaluation of MAP D-PHASE heavy precipitation alerts in Switzerland during summer 2007. Atmos. Res. 100(2–3), 178–189 (2011)

    Article  Google Scholar 

  • N. Andres, A. Badoux, C. Hegg, Unwetterschäden in der Schweiz im Jahre 2014. Rutschungen, Murgänge, Hochwasser und Sturzereignisse. Wasser Energie Luft 107(1), 47–54 (2015)

    Google Scholar 

  • M. Antonetti, R. Buss, S. Scherrer, M. Margreth, M. Zappa, Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations, Hydrol. Earth Syst. Sci. Discuss. 12, 13257–13299 (2015). https://doi.org/10.5194/hessd-12-13257-2015

    Article  Google Scholar 

  • M. Barnolas, A. Atencia, M.C. Llasat, T. Rigo, Characterization of a Mediterranean flash flood event using rain gauges, radar, GIS and lightning data. Adv. Geosci. 17, 35–41 (2008). https://doi.org/10.5194/adgeo-17-35-2008

    Article  Google Scholar 

  • J.C. Bartholmes, J. Thielen, M.H. Ramos, S. Gentilini, The European flood alert system EFAS – part 2, statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci. 13(2), 141–153 (2009)

    Article  Google Scholar 

  • J. Beck, O. Bousquet, Using gap-filling radars in mountainous regions to complement a national radar network: improvements in multiple-doppler wind syntheses. J. Appl. Meteorol. Climatol. 52, 1836–1850 (2013). https://doi.org/10.1175/JAMC-D-12-0187.1

    Article  Google Scholar 

  • M. Berenguer, C. Corral, R. Sanchez-Diezma, D. Sempere-Torres, Hydrological validation of a radar-based nowcasting technique. J. Hydrometeorol. 6, 532–549 (2005). https://doi.org/10.1175/JHM433.1

    Article  Google Scholar 

  • M. Berenguer, D. Sempere-Torres, G.G.S. Pegram, SBMcast – an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J. Hydrol. 404, 226–240 (2011). https://doi.org/10.1016/j.jhydrol.2011.04.033

    Article  Google Scholar 

  • M. Berenguer, M. Surcel, I. Zawadzki, M. Xue, F. Kong, The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models, part II: intercomparison among numerical models and with nowcasting. Mon. Weather Rev. 140, 2689–2705 (2012). https://doi.org/10.1175/mwr-d-11-00181.1

    Article  Google Scholar 

  • A. Binley, K. Beven, Three dimensional modelling of hillslope hydrology. Hydrol. Process. 6(3), 253–368 (1992)

    Article  Google Scholar 

  • N.E. Bowler, C.E. Pierce, A.W. Seed, STEPS: a probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Q. J. Roy. Meteorol. Soc. 132, 2127–2155 (2006). https://doi.org/10.1256/qj.04.100

    Article  Google Scholar 

  • L.S. Campbell, W.J. Steenburgh, Finescale orographic precipitation variability and gap-filling radar potential in little Cottonwood Canyon, Utah. Weather Forecast. 29, 912–935 (2014). https://doi.org/10.1175/WAF-D-13-00129.1

    Article  Google Scholar 

  • V.T. Chow, D.R. Maidment, L.W. Mays, Applied Hydrology. (McGraw-Hill Science/Engineering/Math., McGraw-Hill: New York. ISBN 0-07-010810-2, 1988)

    Google Scholar 

  • S. Coles, An Introduction to Statistical Modeling of Extreme Values, vol. 208 (Springer, London, 2001)

    Book  Google Scholar 

  • C.G. Collier, Flash flood forecasting: what are the limits of predictability? Q. J. Roy. Meteorol. Soc. 133(622), 3–23 (2007)

    Article  Google Scholar 

  • C. Corral, D. Velasco, D. Forcadell, D. Sempere-Torres, Advances in radar-based flood warning systems. The EHIMI system and the experience in the Besòs flash-flood pilot basin, in Flood Risk Management: Research and Practice, ed. by P. Samuels, S. Huntington, W. Allsop, J. Harrop (Taylor & Francis, London, 2009), pp. 1295–1303

    Google Scholar 

  • D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge‐Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, F. Vitart, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • G. Delrieu, J.D. Creutin, H. Andrieu, Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Oceanic Tech. 12, 1038–1049 (1995). https://doi.org/10.1175/1520-0426(1995)012<1038:SORMRU>2.0.CO;2

    Article  Google Scholar 

  • M. Fiorentino, F. Rossi, P. Villani, Effect of the basin geomorphoclimatic characteristics on the mean annual flood reduction curve. Proc. IASTED Int. Conf. Model. Simul. 5, 1777–1784 (1987)

    Google Scholar 

  • L. Foresti, A. Seed, The effect of flow and orography on the spatial distribution of the very short-term predictability of rainfall from composite radar images. Hydrol. Earth Syst. Sci. 18, 4671–4686 (2014). https://doi.org/10.5194/hess-18-4671-2014

    Article  Google Scholar 

  • M. Franco, R. Sánchez-Diezma, D. Sempere-Torres, Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans. Meteorol. Z. 15, 521–536 (2006). https://doi.org/10.1127/0941-2948/2006/0154

    Article  Google Scholar 

  • M. Franco, R. Sánchez-Diezma, D. Sempere-Torres, I. Zawadzki, Improving radar precipitation estimates by applying a VPR correction method based on separating precipitation types, 5th European Conference on Radar in Meteorology and Hydrology (Helsinki, 2008), P14.16

    Google Scholar 

  • J. French, R. Ing, S. Von Allmen, R. Wood, Mortality from flash floods: a review of national weather service reports, 1969–81. Public Health Rep. 98(6), 584 (1983)

    Google Scholar 

  • F. Fundel, M. Zappa, Hydrological ensemble forecasting in mesoscale catchments: sensitivity to initial conditions and value of reforecasts. Water Resour. Res. 47, W09520 (2011). https://doi.org/10.1029/2010WR009996

    Article  Google Scholar 

  • F. Fundel, A. Walser, M.A. Liniger, C. Appenzeller, Calibrated precipitation forecasts for a limited-area ensemble forecast system using reforecasts. Mon. Weather Rev. 138(1), 176–189 (2010)

    Article  Google Scholar 

  • E. Gaume, V. Bain, P. Bernardara, O. Newinger, M. Barbuc, A. Bateman, L. Blaškovičová, G. Blöschl, M. Borga, A. Dumitrescu, I. Daliakopoulos, J. Garcia, A. Irimescu, S. Kohnova, A. Koutroulis, L. Marchi, S. Matreata, V. Medina, E. Preciso, D. Sempere-Torres, G. Stancalie, J. Szolgay, I. Tsanis, D. Velasco, A. Viglione, A compilation of data on European flash floods. J. Hydrol. 367(1–2), 70–78 (2009)

    Article  Google Scholar 

  • K.P. Georgakakos, Analytical results for operational flash flood guidance. J. Hydrol. 317(1), 81–103 (2006)

    Article  Google Scholar 

  • U. Germann, I. Zawadzki, B. Turner, Predictability of precipitation from continental radar images, part IV: limits to prediction. J. Atmos. Sci. 63, 2092–2108 (2006). https://doi.org/10.1175/JAS3735.1

    Article  Google Scholar 

  • U. Germann, M. Berenguer, D. Sempere-Torres, M. Zappa, REAL-Ensemble radar precipitation estimation for hydrology in a mountainous region. Q. J. Roy. Meteorol. Soc. 135, 445–456 (2009). https://doi.org/10.1002/qj.375

    Article  Google Scholar 

  • P. Guillot, D. Duband, La méthode du Gradex pour le calcul de la probabilité des crues à partir les pluies. AISH Publ. 84, 560–569 (1967)

    Google Scholar 

  • A. Günther, M. Van Den Eeckhaut, J.P. Malet, P. Reichenbach, J. Hervás, The European landslide susceptibility map ELSUS 1000 Version 1, EGU General Assembly Conference Abstracts, 15, 10071 (2013), http://adsabs.harvard.edu/abs/2013EGUGA..1510071G. Last accessed 19 Aug 2015

  • B. Heil, I. Petzold, H. Romang, J. Hess, The common information platform for natural hazards in Switzerland. Nat. Hazards 70(3), 1673–1687 (2014)

    Article  Google Scholar 

  • N. Hilker, A. Badoux, C. Hegg, The Swiss flood and landslide damage database 1972–2007. Nat. Hazards Earth Syst. Sci. 9, 913–925 (2009)

    Article  Google Scholar 

  • J.R.M. Hosking, L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B Methodol. 52(1), 105–124 (1990)

    Google Scholar 

  • A. Huuskonen, E. Saltikoff, I. Holleman, The operational weather radar network in Europe. Bull. Am. Meteorol. Soc. 95, 897–907 (2014). https://doi.org/10.1175/BAMS-D-12-00216.1

    Article  Google Scholar 

  • P. Javelle, C. Fouchier, P. Arnoud, J. Lavabre, Flash flood warning at un-gauged locations using radar rainfall and antecedent soil moisture estimations. J. Hydrol. 394, 267–274 (2010)

    Article  Google Scholar 

  • A.F. Jenkinson, The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. Roy. Meteorol. Soc. 81(348), 158–171 (1955)

    Article  Google Scholar 

  • S.N. Jonkman, Global perspectives on loss of human life caused by floods. Nat. Hazards 34(2), 151–175 (2005)

    Article  Google Scholar 

  • S. Jörg-Hess, S. B. Kempf, F. Fundel, M. Zappa, The benefit of climatological and calibrated reforecast data for simulating hydrological droughts in Switzerland, Meteorological Applications, 22(3), 444–458 (2015) https://doi.org/10.1002/met.1474

    Article  Google Scholar 

  • M.G. Kendall, Rank Correlation Methods (Griffin, London, 1970). ISBN 0-85264-199-0

    Google Scholar 

  • V. Knechtl, Flash-flood early warning tool. Use of intensity-duration-frequency curves for flash-flood warning in southern Switzerland and forecast skill evaluation, Master Thesis, ETH Zürich, 2013

    Google Scholar 

  • D. Koutsoyiannis, D. Kozonis, A. Manetas, A mathematical framework for studying rainfall intensity-duration-frequency relationships. J. Hydrol. 206, 118–135 (1998)

    Article  Google Scholar 

  • M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York a.o., XII, 336 pp, 1983)

    Book  Google Scholar 

  • L. Li, W. Schmid, J. Joss, Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteorol. 34, 1286–1300 (1995). https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2

    Article  Google Scholar 

  • K. Liechti, L. Panziera, U. Germann, M. Zappa, The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci. 17, 3853–3869 (2013a). https://doi.org/10.5194/hess-17-3853-2013

    Article  Google Scholar 

  • K. Liechti, M. Zappa, F. Fundel, U. Germann, Probabilistic evaluation of ensemble discharge nowcasts in two nested Alpine basins prone to flash floods. Hydrol. Process. 27, 5–17 (2013b). https://doi.org/10.1002/hyp.9458

    Article  Google Scholar 

  • X. Llort, C.A. Velasco-Forero, J. Roca-Sancho, D. Sempere-Torres, Characterization of uncertainty in radar-based precipitation estimates and ensemble generation, 5th European Conference on Radar in Meteorology and Hydrology (Helsinki, 2008)

    Google Scholar 

  • P.V. Mandapaka, U. Germann, L. Panziera, A. Hering, Can Lagrangian extrapolation of radar fields be used for precipitation nowcasting over complex Alpine orography? Weather Forecast. 27, 28–49 (2012). https://doi.org/10.1175/WAF-D-11-00050.1

    Article  Google Scholar 

  • C. Marsigli, F. Boccanera, A. Montani, T. Paccagnella, The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification. Nonlinear Processes Geophys. 12(4), 527–536 (2005)

    Article  Google Scholar 

  • E.S. Martins, J.R. Stedinger, Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36(3), 737–744 (2000)

    Article  Google Scholar 

  • Meteoschweiz, Documentation of MeteoSwiss Grid-Data Products – Daily Precipitation (final analysis): RhiresD (2013), http://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf. Last accessed 13 July 2015

  • D. Norbiato, M. Borga, S. Esposti, E. Gaume, S. Anquetin, Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J. Hydrol. 362, 274–290 (2008)

    Article  Google Scholar 

  • L. Panziera, U. Germann, M. Gabella, P.V. Mandapaka, NORA–Nowcasting of Orographic Rainfall by means of Analogues. Q. J. Roy. Meteorol. Soc. 137, 2106–2123 (2011). https://doi.org/10.1002/qj.878

    Article  Google Scholar 

  • S. Park, M. Berenguer, Adaptive reconstruction of radar reflectivity in clutter-contaminated areas by accounting for the space–time variability. J. Hydrol. 520, 407–419 (2015). https://doi.org/10.1016/j.jhydrol.2014.11.013

    Article  Google Scholar 

  • G.G.S. Pegram, A.N. Clothier, High-resolution space-time modelling of rainfall: the “String of Beads” model. J. Hydrol. 241, 26–41 (2001). https://doi.org/10.1016/S0022-1694(00)00373-5

    Article  Google Scholar 

  • T. Pellarin, G. Delrieu, G.M. Saulnier, H. Andrieu, B. Vignal, J.D. Creutin, Hydrologic visibility of weather radar systems operating in mountainous regions: case study for the Ardeche catchment (France). J. Hydrometeorol. 3, 539–555 (2002). https://doi.org/10.1175/1525-7541(2002)003<0539:hvowrs>2.0.co;2

    Article  Google Scholar 

  • F. Quintero, D. Sempere-Torres, M. Berenguer, E. Baltas, A scenario-incorporating analysis of the propagation of uncertainty to flash flood simulations. J. Hydrol. 460–461, 90–102 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.045

    Article  Google Scholar 

  • D. Raynaud, J. Thielen, P. Salamon, P. Burek, S. Anquetin, L. Alfieri, A dynamic runoff co-efficient to improve flash flood early warning in Europe: evaluation on the 2013 central European floods in Germany. Meteorol. Appl. 22(3), 410–418 (2015). https://doi.org/10.1002/met.1469

    Article  Google Scholar 

  • S. Reed, J. Schaake, Z. Zhang, A distributed hydrologic model and threshold frequency-based method for flood forecasting at ungauged locations. J. Hydrol. 337, 402–420 (2007)

    Article  Google Scholar 

  • R. Schiemann, M. Liniger, C. Frei, Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland. J. Geophys. Res. 115, D14109 (2010). https://doi.org/10.1029/2009JD013047

    Article  Google Scholar 

  • R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, D. Sempere-Torres, Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol. Earth Syst. Sci. 15, 1515–1536 (2011). https://doi.org/10.5194/hess-15-1515-2011

    Article  Google Scholar 

  • I.V. Sideris, M. Gabella, R. Erdin, U. Germann, Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q. J. Roy. Meteorol. Soc. 140, 1097–1111 (2014). https://doi.org/10.1002/qj.2188

    Article  Google Scholar 

  • R.L. Smith, Maximum likelihood estimation in a class of non-regular cases. Biometrika 72(1), 67–90 (1985)

    Article  Google Scholar 

  • J. Thielen, J. Bartholmes, M.H. Ramos, A. de Roo, The European flood alert system – part 1: concept and development. Hydrol. Earth Syst. Sci. 13(2), 125–140 (2009)

    Article  Google Scholar 

  • J.M. van der Knijff, J. Younis, A. de Roo, A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010)

    Article  Google Scholar 

  • C.A. Velasco-Forero, D. Sempere-Torres, E.F. Cassiraga, J.J. Gómez-Hernández, A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour. 32, 986–1002 (2009)

    Article  Google Scholar 

  • P. Versini, M. Berenguer, C. Corral, D. Sempere-Torres, An operational flood warning system for poorly gauged basins: demonstration in the Guadalhorce basin (Spain). Nat. Hazards 71, 1355–1378 (2014). https://doi.org/10.1007/s11069-013-0949-7

    Article  Google Scholar 

  • A. Viglione, G. Blöschl, On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol. Earth Syst. Sci. 13(2), 205–216 (2009). https://doi.org/10.5194/hess-13-205-2009

    Article  Google Scholar 

  • G. Villarini, W. Krajewski, Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 31, 107–129 (2009). https://doi.org/10.1007/s10712-009-9079-x

    Article  Google Scholar 

  • G. Villarini, W. Krajewski, G. Ciach, D. Zimmerman, Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res. 45, W01404 (2009). https://doi.org/10.1029/2008wr006946

    Article  Google Scholar 

  • D. Viviroli, M. Zappa, J. Gurtz, R. Weingartner, An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ. Model. Software 24(10), 1209–1222 (2009)

    Article  Google Scholar 

  • A. Wald, J. Wolfowitz, On a test whether two samples are from the same population. Ann. Math. Stat. 11, 147–162 (1940)

    Article  Google Scholar 

  • M. Zappa, M. Rotach, M. Arpagaus, M. Dorninger, C. Hegg, A. Montani, R. Ranzi, F. Ament, U. Germann, G. Grossi, S. Jaun, A. Rossa, S. Vogt, A. Walser, J. Wehrhan, C. Wunram, MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett. 9(2), 80–87 (2008)

    Article  Google Scholar 

  • M. Zappa, S. Jaun, U. Germann, A. Walser, F. Fundel, Superposition of three sources of uncertainties in operational flood forecasting chains. Atmos. Res. 100(2–3), 246–262 (2011). https://doi.org/10.1016/j.atmosres.2010.12.005. Thematic Issue on COST731

    Article  Google Scholar 

  • M. Zappa, F. Fundel, S. Jaun, A “Peak-Flow Box” approach for supporting interpretation and evaluation of operational ensemble flood forecasts. Hydrol. Process. 27, 117–131 (2013). https://doi.org/10.1002/hyp.9521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Alfieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alfieri, L., Berenguer, M., Knechtl, V., Liechti, K., Sempere-Torres, D., Zappa, M. (2019). Flash Flood Forecasting Based on Rainfall Thresholds. In: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39925-1_49

Download citation

Publish with us

Policies and ethics