Skip to main content

Horizontal Acquisition of Prokaryotic Genes for Eukaryote Functioning and Niche Adaptation

  • Chapter
  • First Online:
Evolutionary Biology: Exobiology and Evolutionary Mechanisms

Abstract

Horizontal gene transfer (HGT) is a major mechanism of evolution, in that it is pervasive and can dramatically affect lifestyle by allowing adaptation to specialized niches. Although research has mostly focused on HGT within prokaryotes, examples of inter-domain transfers from prokaryotes to eukaryotes are increasing, and such inter-domain HGT is emerging as a very significant component in ecological and evolutionary terms. Here, different cases of intra- and inter-domain HGT conferring an adaptive advantage to eukaryotes are reviewed to examine novel trends and HGT paradigms. Thus, HGT appears to play an important role in eukaryotic adaptation to specific environmental conditions, including in the ecological evolution toward parasitic lifestyles and pathogenesis. The diversity of prokaryotes and their genetic potential are emerging as a vast reservoir to foster rapid eukaryote evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci USA 109:4962–4967

    Article  PubMed  CAS  Google Scholar 

  • Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee S-J, Yeats TH, Egan AN, Doyle JJ et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci USA 109:4197–4202

    PubMed  Google Scholar 

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Anderson MT, Seifert HS (2011) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. MBio 2:e00005–e00011

    Article  PubMed  Google Scholar 

  • Andersson JO (2009) Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol 63:177–193

    Article  PubMed  CAS  Google Scholar 

  • Aoki S, Syōno K (1999) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci USA 96:13229–13234

    Article  PubMed  CAS  Google Scholar 

  • Archibald J, Rogers M, Toop M, Ishida K, Keeling P (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Arsène-Ploetze F, Koechler S, Marchal M, Coppée J-Y, Chandler M et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6:e1000859

    Article  PubMed  Google Scholar 

  • Belbahri L, Calmin G, Mauch F, Andersson JO (2008) Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor. Gene 408:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson A, Young G, Goertzen L, Palmer J (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    Article  PubMed  CAS  Google Scholar 

  • Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A (2012) Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 8:e1003035

    Article  PubMed  CAS  Google Scholar 

  • Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B 277:819–827

    Article  PubMed  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D et al (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  PubMed  CAS  Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618

    Article  PubMed  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    Article  PubMed  CAS  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA 105:10039–10044

    Article  PubMed  CAS  Google Scholar 

  • Danchin EG (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 107:17651–17656

    Article  PubMed  CAS  Google Scholar 

  • Danchin EG (2011) What nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals. Mob Genet Elem 1: 269–292

    Google Scholar 

  • Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–355

    PubMed  CAS  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Doolittle W (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    Article  PubMed  CAS  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  PubMed  CAS  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Muñoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2:e94

    Article  PubMed  Google Scholar 

  • Filée J, Siguier P, Chandler M (2007) I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet 23:10–15

    Article  PubMed  Google Scholar 

  • Frapolli M, Pothier JF, Défago G, Moënne-Loccoz Y (2012) Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads. Mol Phylogenet Evol 63:877–890

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–361

    Article  PubMed  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE 3:e2616

    Article  PubMed  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Thi Ngoc PC, Ortego F et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  Google Scholar 

  • Haegeman A, Jones JT, Danchin EGJ (2011) Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant-Microbe Interact 24:879–887

    Article  PubMed  CAS  Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2005) Poxvirus genome evolution by gene gain and loss. Mol Phylogenet Evol 35:186–195

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Irausquin S, Friedman R (2010) The evolutionary biology of poxviruses. Infect Genet Evol 10:50–59

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Macis L, Reitner J, Worheide G (2011) A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol 11:238

    Article  PubMed  CAS  Google Scholar 

  • Keeling P, Palmer J (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009) Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 19:613–619

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Inagaki Y (2004) A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha. Proc Natl Acad Sci USA 101:15380–15385

    Article  PubMed  CAS  Google Scholar 

  • Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81:395–414

    Article  PubMed  CAS  Google Scholar 

  • Klotz MG, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20:1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Koonin E (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034

    Article  PubMed  CAS  Google Scholar 

  • Koonin E, Makarova K, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Koonin E, Wolf Y (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  PubMed  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res 13:1589–1594

    Article  PubMed  CAS  Google Scholar 

  • Kuo C-H, Ochman H (2009) The fate of new bacterial genes. FEMS Microbiol Rev 33:38–43

    Article  PubMed  CAS  Google Scholar 

  • Lander ES (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lang A, Beatty J (2007) Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol 15:54–62

    Article  PubMed  CAS  Google Scholar 

  • Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C et al (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    Article  PubMed  Google Scholar 

  • Li Z-W, Shen Y-H, Xiang Z-H, Zhang Z (2011) Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol Biol 11:356

    Article  PubMed  CAS  Google Scholar 

  • Lurie-Weinberger MN, Gomez-Valero L, Merault N, Glöckner G, Buchrieser C, Gophna U (2010) The origins of eukaryotic-like proteins in Legionella pneumophila. Int J Med Microbiol 300:470–481

    Article  PubMed  CAS  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  PubMed  CAS  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26:5–8

    Article  PubMed  CAS  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in Nature. Mol Plant-Microbe Interact 25:1542–1551

    Article  PubMed  CAS  Google Scholar 

  • Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U (2012) Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol 29:2223–2230

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Médigue C, Koechler S, Barbe V, Barakat M, Talla E, Bonnefoy V, Krin E, Arsène-Ploetze F, Carapito C et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53

    Article  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Nelson KE (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO, Deppenmeier U, Martin WF (2012) Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad Sci USA 109:20537–20542

    Article  PubMed  CAS  Google Scholar 

  • Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714

    Article  PubMed  CAS  Google Scholar 

  • Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A (2010) Bacterial genes in the Aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6:e1000827

    Article  PubMed  Google Scholar 

  • Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18:272–280

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence J, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Patrick S, Blakely GW (2012) Crossing the eukaryote-prokaryote divide: a ubiquitin homolog in the human commensal bacterium Bacteroides fragilis. Mob Genet Elem 2:149–151

    Article  Google Scholar 

  • Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21:599–609

    Article  PubMed  CAS  Google Scholar 

  • Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F (2008) Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245. Mol Plant-Microbe Interact 21:831–842

    Article  PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier J, Vial L, Poirier M, Wisniewski-Dyé F, Moënne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219

    Article  PubMed  CAS  Google Scholar 

  • Puigbo P, Wolf Y, Koonin E (2009) Search for a tree of life in the thicket of the phylogenetic forest. J Biol 8:59

    Article  PubMed  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2001) Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhlD with plant polyketide synthases. Mol Plant-Microbe Interact 14:639–652

    Article  PubMed  CAS  Google Scholar 

  • Raz Y, Tannenbaum E (2010) The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics 185:327–337

    Article  PubMed  CAS  Google Scholar 

  • Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M (2012) Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci USA 109:18482–18487

    Article  PubMed  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. The Plant Cell Online 21: 1897–1911

    Google Scholar 

  • Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 108:15258–15263

    Article  PubMed  CAS  Google Scholar 

  • Rogers MB (2007) A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 7:89

    Article  PubMed  Google Scholar 

  • Sagane Y, Zech K, Bouquet J-M, Schmid M, Bal U, Thompson EM (2010) Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans. Development 137:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906

    Article  PubMed  CAS  Google Scholar 

  • Sanders IR (2006) Rapid disease emergence through horizontal gene transfer between eukaryotes. Trends Ecol Evol 21:656–658

    Article  PubMed  Google Scholar 

  • Scholl E, Thorne J, McCarter J, Bird DM (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39

    Article  PubMed  Google Scholar 

  • Schröder G, Schuelein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108:14643–14648

    Article  PubMed  Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between Fungi. Curr Biol 21:134–139

    Article  PubMed  CAS  Google Scholar 

  • Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O (2012) Vertical evolution and horizontal transfer of CR1 Non-LTR Retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species. Mol Biol Evol 29:3685–3702

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Sun BF, Xiao JH, He SM, Liu L, Murphy RW, Huang DW (2013) Multiple ancient horizontal gene transfers and duplications in lepidopteran species. Insect Mol Biol 22:72–87

    Article  PubMed  CAS  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    Article  PubMed  CAS  Google Scholar 

  • Treangen TJ, Rocha EPC (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 7:e1001284

    Article  PubMed  CAS  Google Scholar 

  • Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Moënne-Loccoz Y, Bally R, Wisniewski-Dyé F (2006) Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188:5364–5373

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, The Nasonia Genome Working Group (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348

    Google Scholar 

  • Werner S, Steiner U, Bechner R, Kortekamp A, Zyprian E, Deising HB (2002) Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen plasmopara viticola. FEMS Microbiol Letters 208: 169–173

    Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed  Google Scholar 

  • Wybouw N, Balabanidou V, Ballhorn DJ, Dermauw W, Grbić M, Vontas J, Van Leeuwen T (2012) A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem Mol Biol 42:881–889

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156

    Article  PubMed  Google Scholar 

  • Yue J, Hu X, Sun H, Yang Y, Huang J (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152

    Article  PubMed  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Bruto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruto, M., Prigent-Combaret, C., Luis, P., Hoff, G., Moënne-Loccoz, Y., Muller, D. (2013). Horizontal Acquisition of Prokaryotic Genes for Eukaryote Functioning and Niche Adaptation. In: Pontarotti, P. (eds) Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38212-3_11

Download citation

Publish with us

Policies and ethics