Skip to main content

Roles of MicroRNAs in the Life Cycles of Mammalian Viruses

  • Chapter
  • First Online:
Intrinsic Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 371))

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs expressed by plants, animals, and some viruses. miRNAs generally function as part of miRNA-induced silencing complexes to modestly repress mRNAs with imperfect sequence complementarity. Over the last years, many different roles of miRNA mediated regulation in the life cycles of mammalian viruses have been uncovered. In this chapter, I will mainly explore four different examples of how cellular miRNAs interact with viruses: the role of miR-155 in viral oncogenesis, viral strategies to eliminate cellular miR-27, the contribution of miR-122 to the replication of hepatitis C virus, and miRNAs as an experimental tool to control virus replication and vector transgene expression. In the final part of this chapter, I will give a brief overview of virally encoded microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht JC (2000) Primary structure of the Herpesvirus ateles genome. J Virol 74:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science 328:1534–1539. doi:10.1126/science.1187058 328/5985/1534 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565. doi:10.1128/JVI.79.15.9556-9565.2005 79/15/9556 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785. doi:10.1101/gad.1705308 22/20/2773 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Backes S, Shapiro JS, Sabin LR et al (2012) Degradation of host microRNAs by poxvirus poly (A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 12:200–210. doi:10.1016/j.chom.2012.05.019 S1931-3128(12)00233-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Barnes D, Kunitomi M, Vignuzzi M, Saksela K, Andino R (2008) Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4:239–248. doi:10.1016/j.chom.2008.08.003 S1931-3128(08)00259-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002 S0092-8674(09)00008-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336. doi:10.1016/j.molcel.2007.09.028 S1097-2765(07)00669-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Binder M, Kochs G, Bartenschlager R, Lohmann V (2007) Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology 46:1365–1374. doi:10.1002/hep.21829

    Article  PubMed  CAS  Google Scholar 

  • Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Karnowski HW, Cai X, Shin J, Pohlers M, Cullen BR (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol Cell 37:135–142. doi:10.1016/j.molcel.2009.12.016 S1097-2765(09)00920-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bolisetty MT, Dy G, Tam W, Beemon KL (2009) Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol 83:12009–12017. doi:10.1128/JVI.01182-09 JVI.01182-09 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Boss IW, Nadeau PE, Abbott JR, Yang Y, Mergia A, Renne R (2011) A Kaposi’s sarcoma-associated herpesvirus-encoded ortholog of microRNA miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2Rgammanull mice. J Virol 85:9877–9886. doi:10.1128/JVI.05558-11 JVI.05558-11 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bowden RJ, Simas JP, Davis AJ, Efstathiou S (1997) Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78(Pt 7):1675–1687

    PubMed  CAS  Google Scholar 

  • Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591. doi:10.1038/nm1398 nm1398 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Cantore A, Annoni A et al (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152. doi:10.1182/blood-2007-03-078493 blood-2007-03-078493 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Buck AH, Perot J, Chisholm MA et al (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16:307–315. doi:10.1261/rna.1819210 rna.1819210 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Schafer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  PubMed  CAS  Google Scholar 

  • Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z, Flemington EK (2008) Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology 382:257–266. doi:10.1016/j.virol.2008.09.018 S0042-6822(08)00602-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566. doi:10.1126/science.1187197 328/5985/1563 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cazalla D, Xie M, Steitz JA (2011) A primate herpesvirus uses the integrator complex to generate viral microRNAs. Mol Cell 43:982–992. doi:10.1016/j.molcel.2011.07.025 S1097-2765(11)00590-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Nicolas E, Marks D et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113. doi:1066 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM (2008) Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 82:8215–8223. doi:10.1128/JVI.02575-07 JVI.02575-07 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–589. doi:10.1038/nature09092 nature09092 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86. doi:10.1126/science.1091903 1091903 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chi SW, Hannon GJ, Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19:321–327. doi:10.1038/nsmb.2230 nsmb.2230 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009. doi:10.1101/gad.1884710 gad.1884710 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24:1951–1960. doi:10.1101/gad.1953310 gad.1953310 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW et al (2010) A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328:1694–1698. doi:10.1126/science.1190809 science.1190809 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cook HL, Lytle JR, Mischo HE et al (2005) Small nuclear RNAs encoded by Herpesvirus saimiri upregulate the expression of genes linked to T cell activation in virally transformed T cells. Curr Biol 15:974–979. doi:10.1016/j.cub.2005.04.034 S0960-9822(05)00434-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029. doi:10.1073/pnas.0602266103 0602266103 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Costinean S, Sandhu SK, Pedersen IM et al (2009) Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 114:1374–1382. doi:10.1182/blood-2009-05-220814 blood-2009-05-220814 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (2006a) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7:563–567. doi:10.1038/ni1352 ni1352 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (2006b) Viruses and microRNAs. Nat Genet 38(Suppl):S25–S30

    Article  PubMed  CAS  Google Scholar 

  • Dahlke C, Maul K, Christalla T, Walz N, Schult P, Stocking C, Grundhoff A (2012) A microRNA Encoded by Kaposi Sarcoma-Associated Herpesvirus Promotes B-Cell Expansion In Vivo. PLoS One 7:e49435. doi:10.1371/journal.pone.0049435 PONE-D-12-20948 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Damania B (2004) Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2:656–668. doi:10.1038/nrmicro958 nrmicro958 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Davis E, Caiment F, Tordoir X et al (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749. doi:10.1016/j.cub.2005.02.060 S0960-9822(05)00233-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644. doi:10.1038/nri2824 nri2824 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  • Dolken L, Krmpotic A, Kothe S et al (2010) Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6:e1001150. doi:10.1371/journal.ppat.1001150

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050. doi:10.1261/rna.2414110 rna.2414110 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC (2008) A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16:1437–1443. doi:10.1038/mt.2008.130 mt2008130 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632. doi:10.1073/pnas.0500613102 0500613102 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Lindow M, Schutz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899. doi:10.1038/nature06783 nature06783 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ensser A, Pfinder A, Muller-Fleckenstein I, Fleckenstein B (1999) The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 73:10551–10555

    PubMed  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98. doi:10.1016/j.cmet.2006.01.005 S1550-4131(06)00029-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Feederle R, Haar J, Bernhardt K et al (2011a) The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85:9801–9810. doi:10.1128/JVI.05100-11 JVI.05100-11 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M, Cullen BR, Delecluse HJ (2011b) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7:e1001294. doi:10.1371/journal.ppat.1001294

    Article  PubMed  CAS  Google Scholar 

  • Forte E, Salinas R, Chang C et al (2012) The Epstein-Barr virus induced tumor suppressor miR-34a is growth promoting in EBV-infected B cells. J Virol. doi:10.1128/JVI.07056-11 JVI.07056-11 [pii]

    Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108 gr.082701.108 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara T, Kambara H, Shiokawa M et al (2012) Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol 86:7918–7933. doi:10.1128/JVI.00567-12 JVI.00567-12 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108. doi:10.1038/nrg2504 nrg2504 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gironella M, Seux M, Xie MJ et al (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104:16170–16175. doi:10.1073/pnas.0703942104 0703942104 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Golembe TJ, Yong J, Battle DJ, Feng W, Wan L, Dreyfuss G (2005) Lymphotropic Herpesvirus saimiri uses the SMN complex to assemble Sm cores on its small RNAs. Mol Cell Biol 25:602–611. doi:10.1128/MCB.25.2.602-611.2005 25/2/602 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E (2012) Kaposi’s Sarcoma-Associated Herpesvirus microRNAs. Front Microbiol 3:165. doi:10.3389/fmicb.2012.00165

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Cai X, Cullen BR (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 80:5321–5326

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Mukherjee N, Sachse C et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099. doi:10.1038/nature05992 nature05992 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Corcoran DL, Mukherjee N et al (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10:515–526. doi:10.1016/j.chom.2011.09.012 S1931-3128(11)00331-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Grey F, Meyers H, White EA, Spector DH, Nelson J (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163. doi:10.1371/journal.ppat.0030163 07-PLPA-RA-0411 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi:10.1093/nar/gkj112 34/suppl_1/D140 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952 gkm952 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105. doi:10.1016/j.molcel.2007.06.017 S1097-2765(07)00407-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411:325–343. doi:10.1016/j.virol.2011.01.002 S0042-6822(11)00007-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750. doi:10.1261/rna.2326106 rna.2326106 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Haasch D, Chen YW, Reilly RM et al (2002) T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol 217:78–86 S0008874902005063 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Haecker I, Gay LA, Yang Y, Hu J, Morse AM, McIntyre LM, Renne R (2012) Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog 8:e1002884. doi:10.1371/journal.ppat.1002884 PPATHOGENS-D-12-00522 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Han YC, Park CY, Bhagat G et al (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489. doi:10.1084/jem.20090831 jem.20090831 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Henke JI, Goergen D, Zheng J et al (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310. doi:10.1038/emboj.2008.244 emboj2008244 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ho BC, Yu SL, Chen JJ et al (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9:58–69. doi:10.1016/j.chom.2010.12.001 S1931-3128(10)00411-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jangra RK, Yi M, Lemon SM (2010a) DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J Virol 84:6810–6824. doi:10.1128/JVI.00397-10 JVI.00397-10 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jangra RK, Yi M, Lemon SM (2010b) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84:6615–6625. doi:10.1128/JVI.00417-10 JVI.00417-10 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jopling C (2012) Liver-specific microRNA-122: Biogenesis and function. RNA Biol 9:137–142. doi:10.4161/rna.18827 18827 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85. doi:10.1016/j.chom.2008.05.013 S1931-3128(08)00173-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jurak I, Griffiths A, Coen DM (2011) Mammalian alphaherpesvirus miRNAs. Biochim Biophys Acta 1809:641–653. doi:10.1016/j.bbagrm.2011.06.010 S1874-9399(11)00102-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Furusaka A, Miyamoto M et al (2001) Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol 64:334–339. doi:10.1002/jmv.1055 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kelly EJ, Hadac EM, Greiner S, Russell SJ (2008) Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 14:1278–1283. doi:10.1038/nm.1776 nm.1776 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kieff E, Rickinson A (2007) Epstein-Barr virus and its replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. pp 2603–2654

    Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. doi:10.1038/nrm2632 nrm2632 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8:e1003018. doi:10.1371/journal.ppat.1003018 PPATHOGENS-D-12-01682 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RP, Burke JM, Sullivan CS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci USA 109:3077–3082. doi:10.1073/pnas.1116107109 1116107109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kluiver J, Poppema S, de Jong D et al (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249. doi:10.1002/path.1825

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689. doi:10.1038/nature04303 nature04303 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lagos D, Pollara G, Henderson S et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519. doi:10.1038/ncb2054 ncb2054 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739 S0960982202008096 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201. doi:10.1126/science.1178178 science.1178178 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Langlois RA, Varble A, Chua MA, Garcia-Sastre A, tenOever BR (2012) Hematopoietic-specific targeting of influenza A virus reveals replication requirements for induction of antiviral immune responses. Proc Natl Acad Sci USA 109:12117–12122. doi:10.1073/pnas.1206039109 1206039109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Leber MF, Bossow S, Leonard VH et al (2011) MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 19:1097–1106. doi:10.1038/mt.2011.55 mt201155 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lee SI, Murthy SC, Trimble JJ, Desrosiers RC, Steitz JA (1988) Four novel U RNAs are encoded by a herpesvirus. Cell 54:599–607 S0092-8674(88)80004-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lemon SM, Walker C, Alter MJ, Yi M (2007) Hepatitis C Virus. In: Knipe DM, Howley PM (eds) Fields virology, pp 1253–1304

    Google Scholar 

  • Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc Natl Acad Sci USA 108:4991–4996. doi:10.1073/pnas.1016606108 1016606108 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM (2013) Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA 110:1881–1886. doi:10.1073/pnas.1213515110 1213515110 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Libri V, Helwak A, Miesen P et al (2012) Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci USA 109:279–284. doi:10.1073/pnas.1114204109 1114204109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Flemington EK (2011) miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett 305:186–199. doi:10.1016/j.canlet.2010.08.018 S0304-3835(10)00426-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lin LT, Noyce RS, Pham TN et al (2010) Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 84:9170–9180. doi:10.1128/JVI.00559-10 JVI.00559-10 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84:11670–11678. doi:10.1128/JVI.01248-10 JVI.01248-10 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 104:16164–16169. doi:10.1073/pnas.0702896104 0702896104 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Loeb GB, Khan AA, Canner D et al (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48:760–770. doi:10.1016/j.molcel.2012.10.002 S1097-2765(12)00854-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 7638 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876. doi:10.1128/JVI.78.23.12868-12876.2004 78/23/12868 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Machlin ES, Sarnow P, Sagan SM (2011) Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA 108:3193–3198. doi:10.1073/pnas.1012464108 1012464108 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Machlin ES, Sarnow P, Sagan SM (2012) Combating hepatitis C virus by targeting microRNA-122 using locked nucleic acids. Curr Gene Ther 12:301–306 CGT-12-4-301 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55:1350–1359. doi:10.1136/gut.2005.076646 55/9/1350 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Marcinowski L, Tanguy M, Krmpotic A et al (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8:e1002510. doi:10.1371/journal.ppat.1002510 PPATHOGENS-D-11-02267 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169. doi:10.1002/gcc.10316

    Article  PubMed  CAS  Google Scholar 

  • Mortimer SA, Doudna JA (2013) Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Res. doi:10.1093/nar/gkt075 gkt075 [pii]

    Google Scholar 

  • Motsch N, Pfuhl T, Mrazek J, Barth S, Grasser FA (2007) Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4:131–137 5206 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Mrazek J, Kreutmayer SB, Grasser FA, Polacek N, Huttenhofer A (2007) Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res 35:e73. doi:10.1093/nar/gkm244 gkm244 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Murray CL, Rice CM (2011) Turning hepatitis C into a real virus. Annu Rev Microbiol 65:307–327. doi:10.1146/annurev-micro-090110-102954

    Article  PubMed  CAS  Google Scholar 

  • Murthy S, Kamine J, Desrosiers RC (1986) Viral-encoded small RNAs in herpes virus saimiri induced tumors. EMBO J 5:1625–1632

    PubMed  CAS  Google Scholar 

  • Murthy SC, Trimble JJ, Desrosiers RC (1989) Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J Virol 63:3307–3314

    PubMed  CAS  Google Scholar 

  • Norman KL, Sarnow P (2010) Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA miR-122 involves distinct mechanisms. J Virol 84:666–670. doi:10.1128/JVI.01156-09 JVI.01156-09 [pii]

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609. doi:10.1073/pnas.0610731104 0610731104 [pii]

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594. doi:10.1084/jem.20072108 jem.20072108 [pii]

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106:7113–7118. doi:10.1073/pnas.0902636106 0902636106 [pii]

    Article  PubMed  Google Scholar 

  • Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100. doi:10.1016/j.cell.2007.06.028 S0092-8674(07)00795-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Perez JT, Pham AM, Lorini MH, Chua MA, Steel J, tenOever BR (2009) MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 27:572–576. doi:10.1038/nbt.1542 nbt.1542 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Randall G, Panis M, Cooper JD et al (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104:12884–12889. doi:10.1073/pnas.0704894104 0704894104 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221. doi:10.1038/emboj.2012.63 emboj201263 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Roberts AP, Lewis AP, Jopling CL (2011) miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res 39:7716–7729. doi:10.1093/nar/gkr426 gkr426 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611. doi:10.1126/science.1139253 316/5824/608 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86. doi:10.1038/nature05983 nature05983 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30:658–670. doi:10.1038/nbt.2287 nbt.2287 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Saetrom P, Heale BS, Snove O Jr, Aagaard L, Alluin J, Rossi JJ (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333–2342. doi:10.1093/nar/gkm133 gkm133 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Siomi MC (2010) Small RNA-mediated quiescence of transposable elements in animals. Dev Cell 19:687–697. doi:10.1016/j.devcel.2010.10.011 S1534-5807(10)00464-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305

    Article  PubMed  CAS  Google Scholar 

  • Sandhu SK, Volinia S, Costinean S et al (2012) miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci USA 109:20047–20052. doi:10.1073/pnas.1213764109 1213764109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Santanam U, Zanesi N, Efanov A et al (2010) Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 107:12210–12215. doi:10.1073/pnas.1007186107 1007186107 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM (2012) Antiviral strategies in hepatitis C virus infection. J Hepatol 56(Suppl 1):S88–S100. doi:10.1016/S0168-8278(12)60010-5 S0168-8278(12)60010-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. doi:10.1038/nature07228 nature07228 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A, Hammerschmidt W (2010) Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6:e1001063. doi:10.1371/journal.ppat.1001063

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JS, Varble A, Pham AM, Tenoever BR (2010) Noncanonical cytoplasmic processing of viral microRNAs. RNA 16:2068–2074. doi:10.1261/rna.2303610 rna.2303610 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JS, Langlois RA, Pham AM, Tenoever BR (2012) Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA 18:1338–1346. doi:10.1261/rna.032268.112 rna.032268.112 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM (2012a) Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA 109:941–946. doi:10.1073/pnas.1112263109 1112263109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shimakami T, Yamane D, Welsch C, Hensley L, Jangra RK, Lemon SM (2012b) Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. J Virol 86:7372–7383. doi:10.1128/JVI.00513-12 JVI.00513-12 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802. doi:10.1016/j.molcel.2010.06.005 S1097-2765(10)00446-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. doi:10.1146/annurev.micro.112408.134243

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB et al (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845. doi:10.1128/JVI.01804-07 JVI.01804-07 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Corcoran DL, Gottwein E et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484. doi:10.1371/journal.ppat.1002484 PPATHOGENS-D-11-01612 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686

    Article  PubMed  CAS  Google Scholar 

  • Sumpter R Jr, Loo YM, Foy E et al (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699. doi:10.1128/JVI.79.5.2689-2699.2005 79/5/2689 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tam W, Ben-Yehuda D, Hayward WS (1997) bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17:1490–1502

    PubMed  CAS  Google Scholar 

  • Thai TH, Calado DP, Casola S et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608. doi:10.1126/science.1141229 316/5824/604 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA (2005) EBV persistence and latent infection in vivo. In: Robertson ES (ed) Epstein–Barr virus. Caister Academic Press, Norfolk, pp 309–357

    Google Scholar 

  • Tuddenham L, Pfeffer S (2011) Roles and regulation of microRNAs in cytomegalovirus infection. Biochim Biophys Acta 1809:613–622. doi:10.1016/j.bbagrm.2011.04.002 S1874-9399(11)00059-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tuddenham L, Jung JS, Chane-Woon-Ming B, Dolken L, Pfeffer S (2012) Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 86:1638–1649. doi:10.1128/JVI.05911-11 JVI.05911-11 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23:1151–1164. doi:10.1101/gad.1793309 23/10/1151 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. doi:10.1038/nature07103 nature07103 [pii]

    PubMed  Google Scholar 

  • Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683. doi:10.1128/JVI.01185-09 JVI.01185-09 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C et al (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859. doi:10.1016/j.immuni.2007.10.009 S1074-7613(07)00503-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Villanueva RA, Jangra RK, Yi M, Pyles R, Bourne N, Lemon SM (2010) miR-122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes. Antiviral Res 88:119–123. doi:10.1016/j.antiviral.2010.07.004 S0166-3542(10)00669-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi:10.1073/pnas.0510565103 0510565103 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796. doi:10.1038/nm1268 nm1268 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wilson JA, Zhang C, Huys A, Richardson CD (2011) Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 85:2342–2350. doi:10.1128/JVI.02046-10 JVI.02046-10 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Fewell C, Taylor C et al (2010) Transcriptome and targetome analysis in MIR155 expressing cells using RNA-seq. RNA 16:1610–1622. doi:10.1261/rna.2194910 rna.2194910 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596. doi:10.1126/science.1097434 304/5670/594 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Yin Q, McBride J, Fewell C et al (2008) MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J Virol 82:5295–5306. doi:10.1128/JVI.02380-07 JVI.02380-07 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yao Y, Xu H et al (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83:489–492. doi:10.1128/JVI.01166-08 JVI.01166-08 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Xu H, Yao Y et al (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7:e1001305. doi:10.1371/journal.ppat.1001305

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Gastaminza P, Cheng G et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102:9294–9299. doi:10.1073/pnas.0503596102 0503596102 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhu JY, Pfuhl T, Motsch N, Barth S, Nicholls J, Grasser F, Meister G (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 83:3333–3341. doi:10.1128/JVI.01689-08 JVI.01689-08 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

EG would like to thank Judith Gottwein, Mark Manzano, and Eleonora Forte for comments on the manuscript. This work was supported by the Zell Family Foundation and the Robert H. Lurie Comprehensive Cancer Center. The content is solely the responsibility of the author and does not necessarily represent the official views of the Zell Family Foundation and the Robert H. Lurie Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Gottwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottwein, E. (2013). Roles of MicroRNAs in the Life Cycles of Mammalian Viruses. In: Cullen, B. (eds) Intrinsic Immunity. Current Topics in Microbiology and Immunology, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37765-5_8

Download citation

Publish with us

Policies and ethics