Skip to main content

Prediction of Forest Aboveground Biomass: An Exercise on Avoiding Overfitting

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Abstract

Mapping and understanding the spatial distribution of forest aboveground biomass (AGB) is an important and challenging task. This paper describes an exercise of predicting the forest AGB of Guinea-Bissau, West Africa, using synthetic aperture radar data and measurements of tree size collected in field campaigns. Several methods were attempted, from linear regression to different variants and techniques of Genetic Programming (GP), including the cutting edge geometric semantic GP approach. The results were compared between each other in terms of root mean square error and correlation between predicted and expected values of AGB. None of the methods was able to produce a model that generalizes well to unseen data or significantly outperforms the model obtained by the state-of-the-art methodology, and the latter was also not better than a simple linear model. We conclude that the AGB prediction is a difficult problem, aggravated by the small size of the available data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, B.: Beyond Copenhagen: Redd plus, agriculture, adaptation strategies and poverty. Global Environmental Change-Human and Policy Dimensions 19(4), 397–399 (2009)

    Article  Google Scholar 

  2. Carreiras, J., Vasconcelos, M., Lucas, R.: Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment 121, 426–442 (2012)

    Article  Google Scholar 

  3. Friedman, J.: Stochastic gradient boosting. Computational Statistics & Data Analysis 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gathercole, C., Ross, P.: Dynamic Training Subset Selection for Supervised Learning in Genetic Programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random Sampling Technique for Overfitting Control in Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 218–229. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic programming. IEEE Transactions on Evolutionary Computation 12(4), 506–524 (2008)

    Article  Google Scholar 

  7. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of GECCO 1999, vol. 2, pp. 1053–1060 (1999)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  9. Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for software quality classification. In: Proceedings of the Eighth IEEE Symposium on International High Assurance Systems Engineering, Tampa, Florida, USA, March 25-26, pp. 56–65 (2004)

    Google Scholar 

  10. Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelly, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T., Laidlaw, M.: An evaluation of the alos palsar l-band backscatter – above ground biomass relationship over Queensland, Australia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3(4), 576–593 (2010)

    Article  Google Scholar 

  11. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO 2002, pp. 829–836. Morgan Kaufmann (2002)

    Google Scholar 

  12. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips, O., Shvidenko, A., Lewis, S., Canadell, J., Ciais, P., Jackson, R., Pacala, S., McGuire, A., Piao, S., Rautiainen, A., Sitch, S., Hayes, D.: A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993 (2011)

    Article  Google Scholar 

  14. Paris, G., Robilliard, D., Fonlupt, C.: Applying Boosting Techniques to Genetic Programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 267–918. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming (March 2008), http://www.gp-field-guide.org.uk

  16. Robilliard, D., Fonlupt, C.: Backwarding: An Overfitting Control for Genetic Programming in a Remote Sensing Application. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 245–254. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories. Genetic Programming and Evolvable Machines 10(2), 141–179 (2009)

    Article  MathSciNet  Google Scholar 

  18. Suen, Y.L., Melville, P., Mooney, R.J.: Combining Bias and Variance Reduction Techniques for Regression Trees. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 741–749. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP applied to predicting pharmacokinetic parameters. In: Proceedings of EuroGP 2013, Springer (to appear, 2013)

    Google Scholar 

  20. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, S. et al. (2013). Prediction of Forest Aboveground Biomass: An Exercise on Avoiding Overfitting. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics