Skip to main content

Flame Retardants: Additives in Plastic Technology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Polymers and Polymeric Composites: A Reference Series

Abstract

This chapter deals with a brief account on various types of topics on flame retardant materials as additives in plastic technology. The chapter focuses on the mechanism of polymer combustion, the main mode of action, and the quality properties of flame retardant materials. It also focuses on the commonly used flammability test for polymers: they are radiant panel, limited oxygen indices (LOI), underwriter’s laboratories (UL 94), and cone calorimeter. This chapter discusses the types of flame retardant materials based on their mode of action, on their mechanism during fire, and on their functional elements. The most known flame retardant based on their functional elements are mineral flame retardants (e.g., metal hydroxide, hydroxyl carbonates, borates), halogenated flame retardants, phosphorous compounds, nitrogen-containing flame retardants, silicon-based flame retardants, and nanometric particles. Since more environmental regulations restricted to halogenated flame retardants especially the brominated ones are issued for health concern and environmental issues, fire safety versus environmental safety and current trend for replacing halogenated flame retardant were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A summary of this technology and its capabilities can be found in Wikipedia at http://en.wikipedia.org/wiki/Additive_manufacturing. Accessed 1 Apr 2013

  • Aaron C, Small CCT-M, Thomas P, Martin R, Frances D, Lisa S (2008) A non-halogenated flame retardant additive for pultrusion. Compos Res J 2:15

    Google Scholar 

  • Alaeea M, Arias P, Sjodin A, Bergmand A (2003) An overview of commercially used brominated flame retardants. Their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689

    Article  Google Scholar 

  • Andersson Ö, Blomkvist G (1981) Polybrominated aromatic pollutants found in fish in Sweden. Chem Rev 10:1051–1060

    Google Scholar 

  • Belousova RG, Schwartz EM, Zariņa IE, Valdniece DJ (2010) Low-toxicity boron-containing flame-retardant additives for polymeric coatings. Russ J Appl Chem 83:328–331

    Article  CAS  Google Scholar 

  • Bocchini S, Frache A, Camino G, Claes M (2007) Polyethylene thermal oxidative stabilization in carbon nanotubes based nanocomposites. Eur Polym J 43:3222

    Article  CAS  Google Scholar 

  • Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Effect of hydroxides and hydroxy carbonate structure on flame retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym Degrad Stab 74:457–464

    Article  CAS  Google Scholar 

  • Camino G, Costa L, Luda di Cortemiglia MP (1991) Overview of fire retardant mechanisms. Polym Degrad Stab 33(2):131–154

    Article  CAS  Google Scholar 

  • Chang YL, Wang YZ, Ban DM, Yang B, Zhao GM (2004) A novel phosphorus-containing polymer as a highly effective flame retardant. Macromol Mater Eng 289:703–707

    Article  CAS  Google Scholar 

  • Chen SJ, Ma YJ, Wang J, Chen D, Luo XJ, Mai BX (2009) Brominated flame retardants in children’s toys: concentration, composition, and children’s exposure and risk assessment. Environ Sci Technol 43(11):4200–4206

    Article  CAS  Google Scholar 

  • Cordner A, Brown P (2013) Moments of uncertainty: ethical considerations and emerging contaminants. Sociol Forum 28(3):469–494

    Article  Google Scholar 

  • Covaci A, Muenhor D, Harrad S, Ali N (2010) Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand. Environ Int 36(7):690–698

    Article  Google Scholar 

  • Dasari A, Yu Z-Z, Mai Y-W, Cai G, Song H (2009) Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer 50:1577–1587

    Article  CAS  Google Scholar 

  • Davis J, Huggard M (1996) The technology of halogen-free flame retardant phosphorus additives for polymeric systems. J Vinyl Addit Technol 2(1):69–75

    Article  CAS  Google Scholar 

  • Davis R, Li YC, Gervasio M, Luu J, Kim YS (2015) One-Pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams. ACS Appl Mater Interfaces 7(11):6082–6092

    Article  CAS  Google Scholar 

  • Dittrich B, Wartig KA, Hofmann D, Mülhaupt R, Schartela B (2013) Flame retardancy through carbon nanomaterials: carbon black. Multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495–1505

    Article  CAS  Google Scholar 

  • Eriksson P, Jakobsson E, Fredriksson A (2001) Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 109:903–908

    Article  CAS  Google Scholar 

  • Franchini E, Galy J, Gerard J-F, Tabuani D, Medici A (2009) Influence of POSS structure on the flame retardant properties of epoxy hybrid networks. Polymer Degrad Stab 94:1728–1736

    Article  CAS  Google Scholar 

  • Galloa E, Schartela B, Aciernob D, Russob P (2011a) Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J 47:1390–1401

    Article  Google Scholar 

  • Galloa E, Schartel B, Braun U, Russo P, Acierno D (2011b) Flame retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly (butylene terephthalate). Polym Adv Technol 22:2382–2391

    Article  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. The Lancet 368:2167–2176

    Article  CAS  Google Scholar 

  • Guillaume E, Marquis D, Saragoza L (2014) Calibration of flow rate in cone calorimeter tests. Flame Mater 38:194–203

    CAS  Google Scholar 

  • Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F (2009) Flame retardancy of silicone-based materials. Polym Degrad Stab 94:465–495

    Article  CAS  Google Scholar 

  • Hoh E, Zhu L, Hites RA (2006) Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ Sci Tech 40:1184–1189

    Article  CAS  Google Scholar 

  • Horrocks AR, Price RD (2001) Advances in fire retardant materials. Wood head Publishing Material/CRC Press, Boston

    Book  Google Scholar 

  • http://www.cnn.com/2012/11/30/tech/innovation/staples-3-d-printing/index.html

  • http://www.economist.com/blogs/schumpeter/2012/11/additive-manufacturing. Accessed 1 Apr 2013.

  • http://www.economist.com/node/21552901. Accessed 1 Apr 2013

  • Jakobsson K, Thuresson K, Rylander L, Sjödin A, Hagmar L, Bergman A (2002) Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere 46(5):709–716

    Article  CAS  Google Scholar 

  • Jiang Z, Liu X, Jiao S, Han J (2013) Zinc hydroxystannate-coated mineral grade Mg(OH)2 as flame- retardant and smoke suppression for flexible PVC. Adv Mater Res 652:481–484

    Google Scholar 

  • Kandola BK (2012) Flame retardant characteristics of natural fiber composites. In: John MJ, Thomas S (eds) Natural polymers. Composites 1:86–117

    Google Scholar 

  • Kaprinidis N, Fuchs S (2008) Halogen-free FR systems for advanced printed circuit boards, electronics and the environment, 2008. ISEE 2008. IEEE international symposium on. doi:10.1109/ISEE.2008.4562853

    Google Scholar 

  • Karter MJ (2001) Fire loss in the United States fire loss during 2000. NFPA, Quincy, p 82. http://www.nfpa.org/PDF/2001FireLoss.PDF?src=nfpa. Accessed 10 Nov

  • Kashiwagi T, Gilman JW (2000) In: Grand AF, Wilkie CA (eds) Flame retardancy of polymeric materials, vol 10. Marcel Dekker, New York, p 353

    Google Scholar 

  • Kashiwagi T, Shields JR, Harris RH, Davis J (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polymer Sci 87:1541–1553

    Article  CAS  Google Scholar 

  • Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, Kim H, Douglas JF (2005) Flammability properties of polymer nanocomposites with single-walled carbon nanotubes effects of nanotube dispersion and concentration. Polymer 46:471

    Article  CAS  Google Scholar 

  • Klatt M (2014) Nitrogen-based flame retardants. In: Morgan AB, Wilkie CA (eds) Non-halogenated flame retardant handbook. Wiley, Hoboken

    Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M, Lopez JM, Cuesta L, Dubois PH (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng 63(3):100–125

    Article  Google Scholar 

  • LeMasters GK, Genaidy AM, Succop P, Deddens J, Sobeih T, Barriera-Viruet H, Dunning K, Lockey J (2006) Cancer risk among firefighters; meta-analysis of 32 studies. J Occup Environ Med 48(11):1189–1202

    Article  Google Scholar 

  • Li B, He Jia He, Guan L, Bing B, Dai J (2009) A novel intumescent flame-retardant system for flame-retarded LDPE/Eva composites. J Appl Polymer Sci 114(6):3626–3635

    Article  CAS  Google Scholar 

  • Lin H, Han L, Dong L (2014) Thermal degradation behaviour and gas phase flame retardant mechanism of polylactide/PCPP blends. J Appl Polymer Sci 131:40480

    Article  Google Scholar 

  • Lin M, Li B, Li Q, Li S, Zhang S (2011) Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polymer Sci 121:1951–1960

    Article  CAS  Google Scholar 

  • Lu S-Y, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polymer Sci 27(8):1661–1712

    Article  CAS  Google Scholar 

  • Lunder S, Sharp R (2003) Mother’s milk: record levels of toxic fire retardants found in American mothers’ breast milk. Environmental Working Group. http://www.ewg.org/reports/mothersmilk/

    Google Scholar 

  • McPherson A, Thorpe B, Ann Blake A (2004) Brominated flame retardants in dust on computers: the case for safer chemicals and better computer design. Computertakeback.org

    Google Scholar 

  • Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37(4):259–279

    Article  CAS  Google Scholar 

  • Muenhor D, Harrad S, Ali N, Covaci, A (2010) Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand. Environ Int 36(7):690–698

    Article  CAS  Google Scholar 

  • Ohta S, Ishizuka D, Nishimura H, Nakao T, Aozasa O, Shimidzu Y (2002) Comparison of polybrominated diphenyl ethers in fish, vegetables and meat and levels in human milk of nursing women in Japan. Chemospher 46(5):689–696

    Article  CAS  Google Scholar 

  • Pal G, Macskasy H (1992) Plastics: their behavior in fires. Stud Polymer Sci 6. ISBN 0-444-98766-5. Elsevier, Amsterdam/Oxford/New York/Tokyo 1991. X, 43 1 p

    Google Scholar 

  • Patel P, Hull TR, Moffatt C (2012) Peek polymer flammability and the inadequacy of the UL-94 classification. Flame Mater 36:185–201

    CAS  Google Scholar 

  • Pettigrew A (1993) Halogenated flame retardants. In: Kirk-Othmer Encyclopaedia of chemical technology, 4th edn, vol 10. Wiley, New York, pp 954–976

    Google Scholar 

  • Qiang Wu, Jianping L, Baojun Q (2003) Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polymer Int 52(8):1326–1331

    Article  CAS  Google Scholar 

  • Ranganathan T, Zilberman J, Farris RJ, Coughlin EB, Emrick T (2006) Deoxybenzion-based polyarylates as halogen-free fire-resistant polymers. Macromolecules 39:3553–3558

    Article  Google Scholar 

  • Report written by Alexandra McPherson, Beverley Thorpe, and Ann Blake, PhD June 2004. www.computertakeback.org

  • Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M (1979) Thermogravimetric study on the decomposition of hydromagnesite 4 MgCO3 · Mg(OH)2 · 4 H2O. Thermochim Acta 33:127–140

    Article  CAS  Google Scholar 

  • Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111(3):357–576

    Article  CAS  Google Scholar 

  • Schartel B (2010) Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 3:4710–4745

    Article  CAS  Google Scholar 

  • Schartel B, Potschke P, Knoll U, Abdel-Goad M (2005) Flame behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J 41:1061

    Article  CAS  Google Scholar 

  • Small A, Plaisted T, Rogers M, Davis F, Sterner L (2008) A non- halogenated flame retardant additive for pultrusion. Composit Res J 2:15

    Google Scholar 

  • Special Chem. Flame Retardants Center: Melamine Compounds. http://www.specialchem4polymers.com/tc/MelamineFlameRetardants/index.aspx?id=4004. Accessed 2007

  • Stapleton HM, Klosterhaus S, Keller A, Lee Ferguson P, van Bergen S, Cooper E, Webster TM, Blum A (2011) Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Tech 45(12):5323–5331

    Article  CAS  Google Scholar 

  • Su G, Saunders D, Yu Y, Yu H, Zhang X, Liu H, Giesy JP (2014) Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China. Chemosphere 114:340–346

    Article  CAS  Google Scholar 

  • Takashi K, John RS, Richard HH, Davis J (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553

    Article  Google Scholar 

  • Tian N, Wen X, Jiang Z, Gong J, Wang Y, Xue J, Tang T (2013) Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene. Ind Eng Chem Res 52:10905–10915

    Article  CAS  Google Scholar 

  • Tkáč (1981) Radical processes in polymer burning and its retardation. I. ESR methods for studying the thermal decomposition of polymers in the pre flame and flame zones. J Poly Sci Part A Poly Chem 19(6):1475–1493

    Article  Google Scholar 

  • Tomy GT, Palace VP, Halldorson T, Braekevelt E, Danell R, Wautier K, Evans B, Binkworth L, Fisk AT (2004) Bioaccumulation, biotransformation, and biochemical effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush). Environ Sci Technol 38(5):1496–1504

    Article  CAS  Google Scholar 

  • Troitzsch J (1990) International plastics flammability handbook, 2nd edn. Hanser Publishers, Munich

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2005) Environmental profiles of chemical flame-retardant alternatives for low-density polyurethane foam (Report). EPA 742-R-05-002A. Retrieved 4 Apr 2013

    Google Scholar 

  • United Nations Environment Program “Urgent Need to Prepare Developing Countries for Surge in E-Wastes”, Bali, 22 Feb 2010

    Google Scholar 

  • Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during defined period of neonatal brain development. Toxicol Sci 76(1):112–120

    Article  CAS  Google Scholar 

  • Walker JK, Luke E, Chen T, Ivarov A (2008) Synergies of metal hydroxides and metal molybdates in low-smoke flexible PVC. In: Proceedings of the 57th IWCS conference, Providence

    Google Scholar 

  • Wang CZ, Wu WH, Ye X, Liu L (2013) Zinc hydroxystannate-coated mineral grade Mg(OH)2 as flame – retardant and smoke suppression for flexible PVC. Adv Mat Res 652:481–484

    Article  Google Scholar 

  • Wang ZY, Liu Y, Wang Q (2010) Flame retardant polyoxymethylene with aluminium hydroxide/melaminE/Navolac resin synergistic system. Polym Degrad Stab 95:945

    Article  CAS  Google Scholar 

  • Yantao Li, Bin Li, Jinfeng D, He J, Suliang G (2008) Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polymer Degrad Stab 93(1):9–16

    Article  CAS  Google Scholar 

  • Yen YY, Wang HT, Guo WJ (2012) Synergistic flame retardant effect of metal hydroxide and nano-clay in EVA composites. Polym Degrad Stab 97:863–869

    Article  CAS  Google Scholar 

  • Zhang H (2004) Fire-safe polymers and polymer composites. Federal Aviation Administration technical report. U.S. Department of Transportation, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheir Youssef Tawfik .

Editor information

Editors and Affiliations

Glossary of Flame Retardants

Additive

Compound added after the polymer has been synthesized but before or during its conversion to final form (e.g., fiber, plastic); not covalently bound to polymer substrate

Carbon nanotubes (CNTs)

An allotrope of carbon. They take the form of cylindrical carbon molecules and have novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics, and other fields of materials science

Combustion

Self-catalyzed exothermic reaction involving two reactants (fuel and oxidizer)

Fire Resistance

Capacity of a material or structure to withstand fire without losing its functional properties

Fire

Uncontrolled combustion

Flame Propagation

Spread of flame from region to region in a combustible material (burning velocity = rate of flame propagation

Flame Resistance

Property in a material of exhibiting reduced flammability

Flame Retardant

Chemical compound capable of imparting flame resistance to (reducing flammability of) a material to which it is added

Flames

Gas-phase combustion processes with emission of visible light

Flammability

Tendency of a material to burn with a flame

Heat flux or thermal flux

The rate of heat energy transfer through a given surface, per unit time. The SI derived unit of heat rate is joule per second, or watt. Heat flux density is the heat rate per unit area. In SI units, heat flux density is measured in [W/m2]

Ignition

Initiation of combustion

Nanoclays

A broad class of naturally occurring inorganic minerals, of which platelike montmorillonite is the most commonly used in materials applications

SI units

International System of Units (noun): SI unit, a system of physical units (SI units) based on the meter, kilogram, second, ampere, kelvin, candela, and mole, together with a set of prefixes to indicate multiplication or division by a power of ten

Smoke

Fine dispersion in air of particles of carbon and other solids and liquids resulting from incomplete combustion

Synergism

Observed effectiveness of combinations of compounds greater than the sum of the effects of individual components

Thermal degradation

Irreversible chemical decomposition due to increase in temperature

Toxicity

Harmful effect on a biological system caused by a chemical or physical agent

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Tawfik, S.Y. (2017). Flame Retardants: Additives in Plastic Technology. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_76-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_76-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Flame Retardants: Additives in Plastic Technology
    Published:
    13 March 2017

    DOI: https://doi.org/10.1007/978-3-642-37179-0_76-2

  2. Original

    Flame Retardants: Additives in Plastic Technology
    Published:
    13 December 2016

    DOI: https://doi.org/10.1007/978-3-642-37179-0_76-1