Skip to main content

Anisotropic Liquid Crystal Networks from Reactive Mesogens

  • Living reference work entry
  • First Online:
Book cover Polymers and Polymeric Composites: A Reference Series

Abstract

Anisotropic liquid crystal (LC) networks prepared from reactive mesogens (RMs) have numerous advantages in optoelectronic devices especially because of the excellent processability. To fabricate the robust thin LC film with excellent thermal, chemical, and mechanical stability, the photopolymerization of the anisotropically pre-oriented RMs should be conducted under optimized conditions. Since the final physical properties of an anisotropic LC network depend on chemical functions and physical intermolecular interactions, the hierarchical superstructures of the programmed RMs with specific chemical functions must be controlled on the different length and time scales before polymerization. This chapter describes the fundamental characteristics and recent research interests of anisotropic LC networks, elastomers, and gels fabricated using a variety of programmed RMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Artal MC, Ros MB, Serrano JL (2001) Antiferroelectric liquid-crystal gel. Chem Mater 13:2056–2067

    Article  CAS  Google Scholar 

  • Bae YJ, Yang HJ, Shin SH, Jeong KU, Lee MH (2011) A novel thin film polarizer from photocurable non-aqueous lyotropic chromonic liquid crystal solutions. J Mater Chem 21:2074–2077

    Article  CAS  Google Scholar 

  • Chatani S, Kloxin CJ, Bowman CN (2014) The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym Chem 5:2187–2201

    Article  CAS  Google Scholar 

  • Chen JW, Huang CC, Chao CY (2014) Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device. ACS Appl Mater Interfaces 6:6757–6764

    Article  CAS  Google Scholar 

  • Cheng SZD (2008) Phase transitions in polymers: the role of metastable states. Elsevier, Boston

    Google Scholar 

  • Crivello JV, Reichmanis E (2014) Photopolymer materials and processes for advanced technologies. Chem Mater 26:533–548

    Article  CAS  Google Scholar 

  • Dai M, Picot OT, Verjans JMN, de HLT, Schenning APHJ, Peijs T, Bastiaansen CWM (2013) Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS Appl Mater Interfaces 5:4945–4950

    Article  CAS  Google Scholar 

  • Dierking I (2000) Polymer network-stabilized liquid crystals. Adv Mater 12:167–181

    Article  CAS  Google Scholar 

  • Finkelmann H, Kock HJ, Rehage G (1981) Investigations on liquid crystalline polysiloxanes. 3. Liquid crystalline elastomers-a new type of liquid crystalline material. Makromol Chem Rapid Commun 2:317–322

    Article  CAS  Google Scholar 

  • Hsieh TT, Hsieh KH, Simon GP, Tiu C, Hsu HP (1998) Effect of crosslinking density on the physical properties of interpenetrating polymer networks of polyurethane and 2-hydroxyethyl methacrylate-terminated polyurethane. J Polym Res 5:153–162

    Article  CAS  Google Scholar 

  • Ikeda T (2003) Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem 13:2037–2057

    Article  CAS  Google Scholar 

  • Jeong KU, Jang JH, Kim DY, Nah C, Lee JH, Lee MH, Sun HJ, Wang CL, Cheng SZD, Thomas EL (2011) Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms. J Mater Chem 21:6824–6830

    Article  CAS  Google Scholar 

  • Jose BAS, Matsushita S, Moroishi Y, Akagi K (2011) Disubstituted liquid crystalline polyacetylene derivatives that exhibit linearly polarized blue and green emissions. Macromolecules 44:6288–6302

    Article  Google Scholar 

  • Kang SW, Jin SH, Chine LC, Sprunt S (2004) Spatial orientational templating of semiconducting polymers in a cholesteric liquid crystal. Adv Funct Mater 14:329–334

    Article  CAS  Google Scholar 

  • Kang DG, Kim DY, Park M, Choi YJ, Im P, Lee JH, Kang SW, Jeong KU (2015) Hierarchical striped walls constructed by the photopolymerization of discotic reactive building blocks in the anisotropic liquid crystal solvents. Macromolecules 48:898–907

    Article  CAS  Google Scholar 

  • Kato T, Hirai Y, Nakaso S, Moriyama M (2007) Liquid-crystalline physical gel. Chem Soc Rev 36:1857–1867

    Article  CAS  Google Scholar 

  • Kemiklioglu E, Hwang JY, Chien LC (2014) Stabilization of cholesteric blue phases using polymerized nanoparticles. Phys Rev E 89:042502

    Article  Google Scholar 

  • Kim DY, Lee SA, Choi HJ, Chien LC, Lee MH, Jeong KU (2013) Reversible actuating and writing behaviours of a head-to-side connected main-chain photochromic liquid crystalline polymer. J Mater Chem C 1:1375–1382

    Article  CAS  Google Scholar 

  • Kim DY, Lee SA, Park M, Choi YJ, Yoon WJ, Kim JS, Yu YT, Jeong KU (2016a) Remote-controllable molecular knob in the mesomorphic helical superstructures. Adv Funct Mater 26:4242–4251

    Article  CAS  Google Scholar 

  • Kim DY, Nah C, Kang SW, Lee SH, Lee KM, White TJ, Jeong KU (2016b) Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures. ACS Nano 10:9570–9576

    Article  CAS  Google Scholar 

  • Kim DY, Shin S, Yoon WJ, Choi YJ, Hwang JK, Kim JS, Lee CR, Choi TL, Jeong KU (2017) From smart denpols to remote-controllable actuators: hierarchical superstructures of azobenzene-based polynorbornenes. Adv Funct Mater 27:1606294–1606301

    Article  Google Scholar 

  • Kishimoto K, Yoshio M, Mukai T, Yoshizawa M, Ohno H, Kato T (2003) Nanostructured anisotropic ion-conductive films. J Am Chem Soc 125:3196–3197

    Article  CAS  Google Scholar 

  • Kumar S (2014) Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater 6:82–94

    Article  CAS  Google Scholar 

  • Lee SH, Bhattacharyya SS, Jin HS, Jeong KU (2012) Devices and materials for high-performance mobile liquid crystal displays. J Mater Chem 22:11893–11903

    Article  CAS  Google Scholar 

  • Liu D, Broer DJ (2014) Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment. Langmuir 30:13499–13509

    Article  CAS  Google Scholar 

  • Liu BY, Chen LJ (2013) Role of surface hydrophobicity in pretilt angle control of polymer-stabilized liquid crystal alignment systems. J Phys Chem C 117:13474–13478

    Article  CAS  Google Scholar 

  • Oei JD, Mishrky M, Barghi N, Rawls HR, Cardenas HL, Aguirre R, Whang K (2013) Development of a low-color, color stable, dual cure dental resin. Dent Mater 29:405–412

    Article  CAS  Google Scholar 

  • Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y (2013) Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 13:36–41

    Article  Google Scholar 

  • Satsangi N, Rawls HR, Norling BK (2005) Synthesis of low-shrinkage polymerizable methacrylate liquid-crystal monomers. J Biomed Mater Res Part B: Appl Biomater 74B:706–711

    Article  CAS  Google Scholar 

  • Seki T (2014) New strategies and implications for the photoalignment of liquid crystalline polymers. Polym J 46:751–768

    Article  CAS  Google Scholar 

  • Urayama K, Honda S, Takigawa T (2006) Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules 39:1943–1949

    Article  CAS  Google Scholar 

  • Wang W, Sun X, Wu W, Peng H, Yu Y (2012) Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew Chem Int Ed 51:4644–4647

    Article  CAS  Google Scholar 

  • Warner M, Terentjev EM (2007) Liquid crystal elastomer. Oxford University Press, Oxford

    Google Scholar 

  • Xie P, Zhang R (2005) Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem 15:2529–2550

    Article  CAS  Google Scholar 

  • Yamaoka D, Hara M, Nagano S, Seki T (2015) Photoalignable radical initiator for anisotropic polymerization in liquid crystalline media. Macromolecules 48:908–914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Writing this review was supported BK21 PLUS program, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Un Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, DY., Kim, N., Jeong, KU. (2019). Anisotropic Liquid Crystal Networks from Reactive Mesogens. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics