Skip to main content

Introduction to Liquid Crystalline Polymers

  • Living reference work entry
  • First Online:
Polymers and Polymeric Composites: A Reference Series

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Liquid crystalline polymers (LCPs) remain the fascinating class of polymeric material due to the useful combination of physical properties. As the name suggests, LCPs, the class of the macromolecules, possess both the properties of solid and liquid that generate astonishing property in this new and interesting class of materials. These polymers can be of many types depending on the position and type of the mesogenic units in the molecular architecture. LCPs are mainly classified as main-chain, side-chain, crosslinked, etc. made of nematic, smectic, cholesteric, and other mesophases. The orientational properties of LCPs are an important aspect to determine the utility of this particular class of material. The molecules in LCP arrange and align themselves in the longitudinal direction more or less in the transverse direction. This fundamental characteristic of LCPs decides many important properties such as mechanical strength, thermal properties, etc. As a result, these LCPs find applications in several areas such as electrical or electronics, information technologies, medical, aircraft, fiber optics, chemical and domestic equipment, etc., due to the excellent thermal conductivity, good dielectric strength, resistance to solvents, and high dimensional stability. This chapter provides a concise yet informative overview of LCPs starting from its origin, types, synthesis methodologies, essential properties, and application areas. This article also provides a comprehensive overview of the underlined physics behind this structural arrangement leading to molecular anisotropy in the material. The commercial aspects such as processing of this material, how this material differs from the conventional polymer in view of engineering aspects, which make them distinct have been highlighted. Basically this chapter provides a fundamental understanding of this wonderful material in a nutshell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen MP, Warren MA, Wilson MR, Sauron A, Smith W (1996) Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals. J Chem Phys 105(7):2850–2858

    Article  CAS  Google Scholar 

  • Broer DJ (1993) Photoinitiated polymerization and crosslinking of liquid-crystalline systems. In: Fouassier J-P, Rabek JF (eds) Radiation curing in polymer science and technology, vol 3. Elsevier Applied Science, London, pp 383–443

    Google Scholar 

  • Broer DJ, Mol GN (1991) Anisotropic thermal expansion of densely cross-linked oriented polymer networks. Polym Eng Sci 31(9):625–631

    Article  CAS  Google Scholar 

  • Broer DJ, Boven J, Mol GN, Challa G (1989) In-situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate. Makromol Chem 190(9):2255–2268

    Article  CAS  Google Scholar 

  • Cresta V, Romano G, Kolpak A, Zalar B, Domenici V (2018) Nanostructured composites based on liquid-crystalline elastomers. Polymers 10(7):773

    Article  PubMed Central  CAS  Google Scholar 

  • De Gennes P-G, Prost J (1993) The physics of liquid crystals. Oxford University Press, New York

    Google Scholar 

  • de Haan LT, Sánchez-Somolinos C, Bastiaansen CM, Schenning AP, Broer DJ (2012) Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew Chem Int Ed 51(50):12469–12472

    Article  CAS  Google Scholar 

  • Dierking I, Al-Zangana S (2017) Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials 7(10):305

    Article  PubMed Central  CAS  Google Scholar 

  • Ditter D, Chen W-L, Best A, Zappe H, Koynov K, Ober CK, Zentel R (2017) MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. J Mater Chem C 5(47):12635–12644

    Article  CAS  Google Scholar 

  • Donald AM, Windle AH, Hanna S (2006) Liquid crystalline polymers. Cambridge University Press, UK

    Google Scholar 

  • Dunmur D, Sluckin T (2014) Soap, science, and flat-screen TVs: a history of liquid crystals. Oxford University Press, New York

    Google Scholar 

  • Ermakov S, Beletskii A, Eismont O, Nikolaev V (2015) Liquid crystals in biotribology: synovial joint treatment. Springer, Germany

    Google Scholar 

  • Gleim W, Finkelmann H (1989) Side chain liquid crystalline elastomers. In: McArdle CB (ed) Side chain liquid crystal polymers. Glasgow Blackie and Son, pp 287–308

    Google Scholar 

  • Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P, Vill V (2014) Handbook of liquid crystals, 8 volume set. Wiley, Germany

    Google Scholar 

  • Gray GW, Vill V, Spiess HW, Demus D, Goodby JW (2009) Physical properties of liquid crystals. Wiley, Germany

    Google Scholar 

  • Hamley I, Garnett S, Luckhurst G, Roskilly S, Sedon J, Pedersen JS, Richardson R (1996) Orientational ordering in the nematic phase of a thermotropic liquid crystal: a small angle neutron scattering study. J Chem Phys 104(24):10046–10054

    Article  CAS  Google Scholar 

  • Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CW, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15(47):5043–5048

    Article  CAS  Google Scholar 

  • He J, Bu W (1994) Microstructure formation in polyblends containing liquid crystalline polymers. Polymer 35(23):5061–5066

    Article  CAS  Google Scholar 

  • Ide Y, Ophir Z (1983) Orientation development in thermotropic liquid crystal polymers. Polym Eng Sci 23(5):261–265

    Article  CAS  Google Scholar 

  • Jaffe M (1991) Applications of liquid crystal polymers. J Stat Phys 62(5–6):985–995

    Article  Google Scholar 

  • Kar KK (2011) Carbon nanotubes: synthesis, characterization and applications. Research Publishing Service, Singapore

    Google Scholar 

  • Kar KK (2016) Composite materials: processing, applications, characterizations. Springer, New York

    Google Scholar 

  • Kar K, Hodzic A (2011) Carbon nanotube based nanocomposites: recent development. Research Publishing, Singapore

    Google Scholar 

  • Kar KK, Otaigbe JU (2004) Rheological characterization of liquid crystal polymers (Xydar-300, Xydar-400 and Xydar-900) measured in ares spectrometer. In: ANTEC conference proceedings, society of plastics engineers

    Google Scholar 

  • Kato T, Tanabe K (2009) Electro-and photoactive molecular assemblies of liquid crystals and physical gels. Chem Lett 38(7):634–639

    Article  CAS  Google Scholar 

  • Khokhlov A, Semenov A (1981) Liquid-crystalline ordering in the solution of long persistent chains. Phys A: Stat Mech Appl 108(2–3):546–556

    Article  Google Scholar 

  • Kim JY, Kim SH (2006) Influence of viscosity ratio on processing and morphology of thermotropic liquid crystal polymer-reinforced poly (ethylene 2, 6-naphthalate) blends. Polym Int 55(4): 449–455

    Article  CAS  Google Scholar 

  • Klein P, Evans B, Ward I (1996) Liquid-crystalline polymer systems: technology advances. ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Kumar S (2001) Liquid crystals: experimental study of physical properties and phase transitions. Cambridge University Press, UK

    Google Scholar 

  • Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7(9):4318–4324

    Article  CAS  Google Scholar 

  • Lee KM, Bunning TJ, White TJ (2012) Autonomous, hands-free shape memory in glassy, liquid crystalline polymer networks. Adv Mater 24(21):2839–2843

    Article  CAS  PubMed  Google Scholar 

  • Lehmann O (1900) Structur, system und magnetisches verhalten flüssiger krystalle und deren mischbarkeit mit festen. Ann Phys 307(8):649–705

    Article  Google Scholar 

  • Lin J-D, Zhang Y-S, Lee J-Y, Mo T-S, Yeh H-C, Lee C-R (2020) Electrically tunable liquid-crystal–polymer composite laser with symmetric sandwich structure. Macromolecules 53(3):913–921

    Article  CAS  Google Scholar 

  • Linstid H, Kaslusky A, McChesney C, Turano M (2000) Liquid crystal polymers: an overview of technology and typical applications. Presentation at NPE, June 19–23

    Google Scholar 

  • Liu D, Broer DJ (2014) Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment. Langmuir 30(45):13499–13509

    Article  CAS  PubMed  Google Scholar 

  • Marrucci G (1996) Rheology and processing of liquid crystal polymers. Polymer liquid crystals series. Chapman & Hall, London

    Google Scholar 

  • McConney ME, Martinez A, Tondiglia VP, Lee KM, Langley D, Smalyukh II, White TJ (2013) Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv Mater 25(41):5880–5885

    Article  CAS  PubMed  Google Scholar 

  • Moeller M, Matyjaszewski K (2012) Polymer science: a comprehensive reference. Elsevier, Amsterdam

    Google Scholar 

  • Nyden M, Gilman J (1998) Computational and theoretical polymer science. PRA Press, Great Britain

    Google Scholar 

  • Ohm C, Brehmer M, Zentel R (2010) Liquid crystalline elastomers as actuators and sensors. Adv Mater 22(31):3366–3387

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos P, Heinze P, Finkelmann H, Kremer F (2010) Electromechanical properties of smectic C∗ liquid crystal elastomers under shear. Macromolecules 43(16):6666–6670

    Article  CAS  Google Scholar 

  • Pavel D, Yarovsky I, Shanks R (2005) Prediction of liquid crystalline properties of poly (1, 4-phenylene sebacate-oxybenzoate) by Monte Carlo simulation. Polymer 46(6):2003–2010

    Article  CAS  Google Scholar 

  • Picken S (1996) Applications of liquid crystal polymers: part 1: Fibre spinning. Liq Cryst Today 6(1):12–15

    Article  Google Scholar 

  • Ramberg PJ (2013) Wilhelm Heintz (1817–1880) and the chemistry of the fatty acids. Bull Hist Chem 38(1):19

    CAS  Google Scholar 

  • Reinitzer F (1989) Contributions to the knowledge of cholesterol. Liq Cryst 5(1):7–18

    Article  CAS  Google Scholar 

  • Saed MO, Ambulo CP, Kim H, De R, Raval V, Searles K, Siddiqui DA, Cue JMO, Stefan MC, Shankar MR (2019) Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv Funct Mater 29(3):1806412

    Article  CAS  Google Scholar 

  • Sánchez-Ferrer A, Fischl T, Stubenrauch M, Wurmus H, Hoffmann M, Finkelmann H (2009) Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macromol Chem Phys 210(20):1671–1677

    Article  CAS  Google Scholar 

  • Shibaev VP, Bobrovsky AY (2017) Liquid crystalline polymers: development trends and photocontrollable materials. Russ Chem Rev 86(11):1024–1072

    Article  Google Scholar 

  • Shibayev V, Byelyayev S (1990) Prospects for the use of functional liquid crystal polymers and composites. Rev Polym Sci USSR 32(12):2384–2428

    Article  Google Scholar 

  • Sullivan A, Saigal A, Zimmerman M (2018) Investigation of liquid crystal polymer structure-property relationships between crystal orientation and dielectric behavior. J Phys Conf Ser 1045:012005. IOP Publishing

    Article  CAS  Google Scholar 

  • Tang R, Liu Z, Xu D, Liu J, Yu L, Yu H (2015) Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl Mater Interfaces 7(16):8393–8397

    Article  CAS  PubMed  Google Scholar 

  • Ten Bosch A, Maissa P, Sixou P (1983) Effect of the flexibility on the phase transition of polymeric liquid crystals. Phys Lett A 94(6–7):298–300

    Article  Google Scholar 

  • White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14(11):1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Wie JJ, Shankar MR, White TJ (2016) Photomotility of polymers. Nat Commun 7(1):1–8

    Article  CAS  Google Scholar 

  • Yoon H-H, Kim D-Y, Jeong K-U, Ahn S-K (2018) Surface aligned main-chain liquid crystalline elastomers: tailored properties by the choice of amine chain extenders. Macromolecules 51(3):1141–1149

    Article  CAS  Google Scholar 

  • Yu L, Peng R, Rivers G, Zhang C, Si P, Zhao B (2020) Multifunctional liquid crystal polymer network soft actuators. J Mater Chem A 8:3390–3396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Department of Science and Technology, Government of India. Authors are thankful to Ms. Tanvi Pal for drafting few figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banerjee, S., Kar, K.K. (2020). Introduction to Liquid Crystalline Polymers. In: Polymers and Polymeric Composites: A Reference Series. Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics