Skip to main content

Mineral Filler Fire Retardants

  • Living reference work entry
  • First Online:
Book cover Polymers and Polymeric Composites: A Reference Series
  • 238 Accesses

Abstract

Mineral filler fire retardants are one of the most important classes of fire retardant, and one of the most important classes of polymer additives. In addition to reducing the flammability of the polymer to within acceptable limits, they can also provide structural integrity and reinforcement to the polymer composite. Mineral filler fire retardants operate through endothermic decomposition with the release of an inert gas or vapor. Four fire retardant effects have been quantified: heat capacity of the filler, decomposition endotherm, heat capacity of the gas or vapor, and heat capacity of the residue. In specific fire scenarios, other factors, such as shielding from radiant heat, may also play a critical role. Unfortunately, the screening techniques for assessment of fire retardant performance do not adequately capture real fire behavior. The common techniques, and their deficiencies, in relation to mineral filler fire retardants are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashley RJ, Rothon RN (1991) Use of inorganic fillers to reduce the flammability of polymers. Plast Rubber Compos Process Appl 15:19–21

    CAS  Google Scholar 

  • Babraukas V (2000) Fire test methods for evaluation of fire-retardant efficacy in polymeric materials. In: Grand AFWCA (ed) Fire retardancy of polymeric materials. CRC Press, New York

    Google Scholar 

  • Beard A (2007) Flame retardants: frequently asked questions, s.l.: The European Flame Retardants Association

    Google Scholar 

  • Bourbigot S et al (1999) Recent advances in the use of zinc borates in flame retardancy of EVA. Polym Degrad Stab 64:419–425

    Article  CAS  Google Scholar 

  • Bourbigot S, Samyn F, Turf T, Duquesne S (2010) Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polym Degrad Stab 95:320–326

    Article  CAS  Google Scholar 

  • Celzard A et al (2011) Flammability assessment of tannin-based cellular materials. Polym Degrad Stab 96:477–482

    Article  CAS  Google Scholar 

  • De Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624

    Article  Google Scholar 

  • Delfosse L, Baillet C, Brault A, Brault D (1989) Combustion of ethylene-vinyl acetate copolymer filled with aluminium and magnesium hydroxides. Polym Degrad Stab 23:337–347

    Article  CAS  Google Scholar 

  • Freedonia Group (2016) World flame retardants. Available at: http://www.freedoniagroup.com/industry-study/3258/world-flame-retardants.htm. Accessed 29 July 2016

  • Herbert MJ (1994) Aluminium hydroxide for non-halogen compounds. Proceedings of Flame Retardants ’94. Interscience, London

    Google Scholar 

  • Hewitt F, Rhebat DE, Witkowski A, Hull TR (2016) An experimental and numerical model for the release of acetone from decomposing EVA containing aluminium, magnesium or calcium hydroxide fire retardants. Polym Degrad Stab 127:65–78

    Article  CAS  Google Scholar 

  • Hollingbery LA, Hull TR (2010) The fire retardant behaviour of huntite and hydromagnesite – a review. Polym Degrad Stab 95:2213–2225

    Article  CAS  Google Scholar 

  • Hollingbery LA, Hull TR (2012) The fire retardant effects of Huntite in natural mixtures with hydromagnesite. Polym Degrad Stab 97:504–512

    Article  CAS  Google Scholar 

  • Hornsby PR, Watson CL (1990) A study of the mechanism of flame retardation and smoke suppression in polymers filled with magnesium-hydroxide. Polym Degrad Stab 30:73–87

    Article  CAS  Google Scholar 

  • Hughes P, Jackson GV, Rothon RN (1993) Particle morphology effects on the performance of PMMA filled with aluminium hydroxide in a variety of fire tests. Makromol Chem Macromol Symp 74:179–183

    Article  CAS  Google Scholar 

  • Hull TR et al (2003) An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab 82:365–371

    Article  CAS  Google Scholar 

  • Hull TR, Quinn RE, Areri IG, Purser DA (2002) Combustion toxicity of fire retarded EVA. Polym Degrad Stab 30:235–242

    Article  Google Scholar 

  • Hull TR, Stec AA, Nazare S (2009) Fire retardant effects of polymer nanocomposites. J Nanosci Nanotechnol 9:4478–4486

    Article  CAS  Google Scholar 

  • Hull TR, Witkowski A, Hollingbery L (2011) Fire retardant action of mineral fillers. Polym Degrad Stab 96:1462–1469

    Article  CAS  Google Scholar 

  • ISO 11358, I (1997) Plastics – Thermogravimetry (TG) of polymers – general principles, s.l.: s.n.

    Google Scholar 

  • Janshekar H, Chinn H, Yang W,Ishikawa Y (2011) Flame retardants, s.l.: Specialty Chemicals, SRI consulting

    Google Scholar 

  • Laachachi A et al (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad Stab 94:1373–1378

    Article  CAS  Google Scholar 

  • Laye PG (2002) Differential thermal analysis and differential scanning calorimetry. In: Haines PJ (ed) Principles of thermal analysis and calorimetry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Li ZZ, Qu BJ (2003) Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polym Degrad Stab 81:401–408

    Article  CAS  Google Scholar 

  • Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71:27–46

    Article  CAS  Google Scholar 

  • Lyon RE, Walters RN, Beach M, Schall FP (2007) Flammability screening of plastics containing flame retardant additives. ADDITIVES, 16th International Conference, San Antonio

    Google Scholar 

  • Nelson MI, Brindley J (2000) Polymer combustion: effects of flame emissivity. Philos Trans R Soc A Math Phys Eng Sci 358:3655–3673

    Google Scholar 

  • Ngohang FE, Fontaine G, Gay L, Bourbigot S (2014) Revisited investigation of fire behaviour of ethylene vinyl acetate/aluminium trihydroxide using a combination of mass loss cone, Fourier transform infrared spectroscopy and electrical low pressure impactor. Polym Degrad Stab 106:26–35

    Article  CAS  Google Scholar 

  • Patel P, Hull TR, Moffat C (2012) PEEK polymer flammability and the inadequacy of the UL-94 classification. Fire Mate 36:185–201

    Article  CAS  Google Scholar 

  • Price D et al (2002) Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polym Degrad Stab 77:227–233

    Article  CAS  Google Scholar 

  • Quintiere JG (1997) Principles of fire behaviour. Delmar Publishers, New York

    Google Scholar 

  • Rigolo M, Woodhams RT (1992) Basic magnesium carbonate flame retardants for polypropylene. Polym Eng Sci 32:327–334

    Article  CAS  Google Scholar 

  • Roskill Information Services Ltd (2014) Flame retardants: global industry, markets & outlook. s.n., London

    Google Scholar 

  • Rothon RN (2003) Effects of particulate fillers on flame retardant properties of composites. In: Rothon RN (ed) Particulate-filled polymer composites, 2nd edn. Rapra Technology, Shawbury

    Google Scholar 

  • Rothon RN, Hornsby PR (1990) A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polym Degrad Stab 30:73–87

    Article  Google Scholar 

  • Rothon RN, Hornsby PR (1996) Flame retardant effects of magnesium hydroxide. Polym Degrad Stab 54:383–385

    Article  CAS  Google Scholar 

  • Schartel B, Hull TR (2007) Development of fire-retarded materials – interpretation of cone calorimeter data. Fire Mater 31:327–354

    Article  CAS  Google Scholar 

  • Schartel B, Weiss A (2010) Temperature inside burning polymer specimens: pyrolysis zone and shielding. Fire Mater 34:217–235

    Article  CAS  Google Scholar 

  • Schmaucks G, Friede B, Schreiner H, Roszinski JO (2009) Amorphous silicon dioxide as additive to improve the fire retardancy of polyamides. In: Hull TR, Kandola BK (eds) Fire retardancy of polymers – new strategies and mechanisms. Royal Society of Chemistry, Cambridge, pp 35–48

    Google Scholar 

  • Shaw SD et al (2010) Halogenated flame retardants: do the fire safety benefits justify the health and environmental risks? Rev Environ Health 25:261–305

    Article  CAS  Google Scholar 

  • Sobolev I, Woychesin EA (1987) Alumina trihydrate. In: Katz HS, Milewski JV (eds) Handbook of fillers for plastics. Van Nostrand Reinhold, New York

    Google Scholar 

  • Souza SP, Souza SH, Toledo SP (2000) Standard transition aluminas. Electron microscopy studies. Mater Res 3:104–114

    Article  Google Scholar 

  • Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271

    Article  CAS  Google Scholar 

  • Wang DY et al (2007) Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polym Degrad Stab 92:1592–1598

    Article  CAS  Google Scholar 

  • Wang D et al (2008) Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polym Degrad Stab 93:1024–1030

    Article  CAS  Google Scholar 

  • Witkowski A, Stec AA, Hull TR (2012) The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polym Degrad Stab 97:2231–2241

    Article  CAS  Google Scholar 

  • Yen Y, Wang H, Guo W (2012) Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym Degrad Stab 97:863–869

    Article  CAS  Google Scholar 

  • Zhang H (2004) Fire-safe polymers and polymer composites. US Department of Transport, s.l

    Google Scholar 

  • Zhang J et al (2010) Thermal stability and flame-retardancy mechanism of poly(ethylene terephthalate)/boehmite nanocomposites. Polym Degrad Stab 95:1211–1218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiona Hewitt or T Richard Hull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Hewitt, F., Hull, T.R. (2016). Mineral Filler Fire Retardants. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics