Skip to main content

Weighing

  • Chapter
Balances

Abstract

The different weighing methods are reviewed. Three methods of direct weighing may be distinguished: weighing in the gravitational field, measurement of the impulse of an accelerated sample, and measurement of the frequency shift of an oscillating sample. Two basic interactions are applied for weighing: gravitation and electromagnetism. Three types of gravitational balances are used: lever balance, spring balance, electromagnetic or electrostatic balance. Parameters characterising a balance and their determination are described in detail. Adjustment of balances, consideration of influences on weighing, error estimate and its elimination are presented. Advantages of substitution and transposition weighing are discussed. Damping devices and methods for speeding up weighing are presented. A survey is given on standardisation method. The limits of weighing are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    MATH  Google Scholar 

  2. Equivalence principle. http://enwikipedia.org/wiki/Equivalence_principle (2007)

  3. T. Gast, T. Brokate, E. Robens, Vacuum weighing, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Weinheim, 2000), pp. 296–399

    Google Scholar 

  4. DIN, DIN 1319, Teil 2: Grundbegriffe der Meßtechnik. Begriffe für die Anwendung von Meßgeräten (Beuth, Berlin, 1980)

    Google Scholar 

  5. DIN, DIN 1319 Teil 3: Grundbegriffe der Meßtechnik. Begriffe für die Meßunsicherheit und für die Beurteilung von Meßgeräten und Meßeinrichtungen (Beuth, Berlin, 1983)

    Google Scholar 

  6. DIN, DIN 8120, Teil 3: Begriffe im Waagenbau (Beuth, Berlin, 1981)

    Google Scholar 

  7. DIN, DIN ISO: Internationales Wörterbuch der Metrologie. International Vocabulary of Basic and General Terms in Metrology (Beuth, Berlin, 1984)

    Google Scholar 

  8. DIN, DIN EN 45501: Metrologische Aspekte nichtselbsttätiger Waagen (Beuth, Berlin, 1992)

    Google Scholar 

  9. A.W. Czanderna, S.P. Wolsky, Microweighing in Vacuum and Controlled Environments (Elsevier, Amsterdam, 1980)

    Google Scholar 

  10. OIML, OIML R 76-1 (E). Non-automatic weighing instruments. Part 1: Metrological and technical requirements—Test. OIML R 76-1 (F). Instruments de pesage à fonctionnement non automatique. Partie 1: Exigences métrologiques et techniques—Essais (OIML, Paris, 1992)

    Google Scholar 

  11. BIPM, International Vocabulary of Metrology—Basic and General Concepts and Associated Terms VIM, 4th edn. JCGM 200:2008, ISO Guide 99 by ISO (ISO/IEC Guide 99-12:2007) (BIPM Sevres, 2008)

    Google Scholar 

  12. EN, D., DIN EN 45501: Metrologische Aspekte nichtselbsttätiger Waagen (Beuth, Berlin, 1992)

    Google Scholar 

  13. A.M. Basedow, H.R. Jenemann, Waage und Wägung, in Quantitative organische Elementaranalyse, ed. by F. Ehrenberger (VCH, Weinheim, 1991), pp. 79–108

    Google Scholar 

  14. E. Robens, Bemerkungen zur Charakterisierung der Leistungsfähigkeit von Waagen. Wägen + Dos. 26, 6 (1995)

    Google Scholar 

  15. E. Robens, The characterization of the capability of a balance. J. Therm. Anal. 47, 619–622 (1996)

    Google Scholar 

  16. C. Berg, Grundlagen der Wägetechnik (Sartorius, Göttingen, 1995)

    Google Scholar 

  17. DIN, DIN 55 350 Begriffe der Qualitätssicherung und Statistik; Teil 13: Begriffe der Qualitätssicherung; Genauigkeitsbegriffe (Beuth, Berlin, 1987)

    Google Scholar 

  18. R. Schwartz, Mass determination with balances, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Weinheim, 2000), pp. 232–295

    Google Scholar 

  19. M. Grabe, Measurement Uncertainties in Science and Technology (Springer, Heidelberg, 2010)

    Google Scholar 

  20. I.G. Hughes, T.P.A. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis (Oxford University Press, Oxford, 2010)

    Google Scholar 

  21. H. Günzler, P. De Bièvre, Measurement Uncertainty in Chemical Analysis (Springer, Heidelberg, 2010)

    Google Scholar 

  22. S.G. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice (Springer, Heidelberg, 2010)

    Google Scholar 

  23. B. Pesch, Messunsicherheit: Basiswissen für Einsteiger und Anwender (Books on Demand Verlag, Norderstedt, 2010)

    Google Scholar 

  24. G. Genta, Methods for Uncertainty Evaluation in Measurement: Statistical Issues in Metrology (VDM Verlag Dr. Müller, Saarbrücken, 2010)

    Google Scholar 

  25. Archimedes, The Works of Archimedes, §7. About Swimming Bodies, vol. 1 (Wissenschaftliche Verlagsbuchhandlung, Frankfurt am Main, 1987)

    Google Scholar 

  26. M. Kochsiek (ed.), Handbuch des Wägens, 2nd edn. (Vieweg, Braunschweig, 1985)

    Google Scholar 

  27. Mettler-Toledo, Mettler Wägefibel (Mettler, Greifensee, 1989)

    Google Scholar 

  28. E. Robens, T. Gast, Errors due to zero uncertainties and buoyancy in the gravimetric measurements of sorption isotherms. J. Vac. Sci. Technol. 15(2), 805–809 (1978)

    ADS  Google Scholar 

  29. E. Robens et al., Auftriebsanwendungen und Auftriebsfehler. Vak.-Tech. 36(5), 139–147 (1987)

    Google Scholar 

  30. E. Robens et al., Determination of the amount adsorbed from the gas phase in a porous solid, in Proceedings of the XXVIth International Conference on Vacuum Microbalance Techniques, ed. by M.b.B. Chanaa (Université Cadi Ayyad, Marrakesh, 1995), pp. 219–224

    Google Scholar 

  31. R.A. Pierotti, Gas-solid interactions and buoyancy, in Vacuum Microbalnce Techniques, ed. by A.W. Czanderna (Plenum, New York, 1967), pp. 1–16

    Google Scholar 

  32. A. Lindau, Gravity Information System of PTB. http://www.ptb.de/cartoweb3/SISproject.php. Physikalisch-Technische Bundesanstalt, Braunschweig (2007)

  33. H.H. Willems, Creep Behaviour and Microstructure of Hardened Cement Pastes (Technische Universiteit, Eindhoven, 1985)

    Google Scholar 

  34. J.A. Poulis, J.M. Thomas, Sensitivity of analytical balances and relevance of fluctuation theory, in Vacuum Microbalance Techniques, vol. 3, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 1–14

    Google Scholar 

  35. C.H. Massen, J.A. Poulis, Sources of error in microweighing, in Microweighing in Vacuum and Controlled Environments, ed. by A.W. Czanderna, S.P. Wolsky (Elsevier, Amsterdam, 1980), pp. 95–123

    Google Scholar 

  36. D. Morse, Lab Balance Handbook (IES Corporation, Portland, 2011). www.iescorp.com/HB.pdf

    Google Scholar 

  37. H.R. Jenemann, The development of the determination of mass, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 119–163

    Google Scholar 

  38. J.A. Cramer, Elementa artis docimasticae 1739/1744, Lugdunum Batavorum = Leyden

    Google Scholar 

  39. A.L. de Lavoisier, Second mémoire sur la nature d’eau. Histoire de l’Académie Royale des Sciences—avec les Mémoires de Mathématique et de Physique, 1770/3, pp. 90–107

    Google Scholar 

  40. H.R. Jenemann, Zur Geschichte der Substitutionswägung und der Substitutionswaage. Technikgeschichte 49, 89–131 (1982)

    MathSciNet  Google Scholar 

  41. A.L. de Lavoisier, R.J. Hauy, Expériences de Lavoisier et Hauy, in Oevres de Lavoisier (Paris, 1793), pp. 683–685

    Google Scholar 

  42. C.F. Gauß, H.C. Schumacher, Briefwechsel, ed. by C.H.F. Peters (Altona, 1861), pp. 34, 61

    Google Scholar 

  43. J. Leupold, Theatrum staticum – das ist: Schauplatz der Gewichtskunst (Theatrum staticum universale, Leipzig, 1726)

    Google Scholar 

  44. L. Euler, Disquisitio de Billancibus. Commentari Acadimiae Scientiarium Imperialis Petropolitanae 1738/1747. 10

    Google Scholar 

  45. C.F. Gauß, Abhandlungen zur Methode der kleinsten Quadrate, ed. by A. Börsch, P. Simon (Vaduz, Berlin, 1886/7)

    Google Scholar 

  46. Error calculation (Universität Basel, 2009)

    Google Scholar 

  47. F.G. Skinner, Weights and Measures—Their Ancient Origins and Their Development in Great Britain up to AD 1855 (Science Museum, London, 1967)

    Google Scholar 

  48. H.R. Jenemann, Die Geschichte der Dämpfung an der Laboratoriumswaage. Ber. Wiss.gesch. 20, 1–17 (1997)

    Google Scholar 

  49. T. Gast, H.R. Jenemann, E. Robens, The damping of balances. J. Therm. Anal. Calorim. 55(2), 347–355 (1999)

    Google Scholar 

  50. W. Felgenträger, Feine Waagen, Wägungen und Gewichte (Springer, Berlin, 1932)

    Google Scholar 

  51. T. Gast, T. Brokate, E. Robens, Vakuumwägung, in Massebestimmung, ed. by M. Kochsiek, M. Gläser (VCH, Weinheim, 1996), pp. 294–399

    Google Scholar 

  52. E. Robens, High-speed weighing. J. Therm. Anal. Calorim. 55, 455–460 (1999)

    Google Scholar 

  53. H.R. Jenemann, E. Robens, Indicator system and suspension of the old Egyptian scales. Thermochim. Acta 152, 249–258 (1989)

    Google Scholar 

  54. C.J. Williams, A new lease on life for gravimetric adsorption. American Laboratory 1969(6)

    Google Scholar 

  55. Y. Kobayashi et al., Prototype kilogram balance II of NRLM. Bull. NRLM 33(2), 7–18 (1984)

    Google Scholar 

  56. Y. Kobayashi et al., Prototype kilogram balance II of NRLM. Bull. NRLM 35(2), 143–158 (1986)

    Google Scholar 

  57. N. Mendelssohn, Beschreibung einer großen und sehr genauen Wage zum Gebrauch für Physiker und Chemiker. Gilberts Ann. Phys. 29, 153–161 (1808)

    ADS  Google Scholar 

  58. M. Gläser, Massekomparatoren, in Massebestimmung, ed. by M. Kochsiek, M. Gläser (VCH, Weinheim, 1997), pp. 442–479

    Google Scholar 

  59. C.F. Plattner, Die Probirkunst mit dem Lötrohre (Leipzig, 1833)

    Google Scholar 

  60. F. Arzberger, Luftdämpfung für analytische Waagen. Liebigs Ann. Chem. 178, 382–384 (1875)

    Google Scholar 

  61. H.R. Jenemann, Zur Geschichte der Herstellung von Präzisionswaagen hoher Leistung in Wien. Bl. Tech.gesch. 49, 7–85 (1987)

    Google Scholar 

  62. P. Curie, Sur une balance de précision et à lecture directe des derniers poids. C. R. Hebd. Séances Acad. Sci. 108, 663–666 (1889)

    Google Scholar 

  63. H.R. Jenemann, Paul Bunge und die Fertigung wissenschaftlicher Waagen in Hamburg. Z. Unternehm.gesch. 31, 117–140 (1986), see also 165–183

    Google Scholar 

  64. H.R. Jenemann, Zur Geschichte der Präzisionsmechanik und der Herstellung feiner Waagen in Gießen. Mitt. Oberhess. Geschichtsver Gießen 66, 5–54 (1981)

    Google Scholar 

  65. W. Kuhn et al., Methods of the elimination of weighing troubles due to convection in a microbalance, in Vacuum Microbalance Techniques, ed. by C.H. Massen, H.J. van Beckum (Plenum, New York, 1961), pp. 1–21

    Google Scholar 

  66. W.C. Tripp, R.W. Vest, N.M. Tallan, System for measuring microgram weight changes under controlled oxygen partial pressure to 1800°C, in Vacuum Microbalance Techniques, ed. by P.M. Waters (Plenum, New York, 1965), pp. 141–157

    Google Scholar 

  67. O. Frölich, Die Entwickelung der elektrischen Messung (Braunschweig, 1905)

    Google Scholar 

  68. W. Marek, Aperiodische Wage mit Hilfsfedern. Österreichische Zentral-Zeitung für Optik und Mechanik 1, 5–7 (1906)

    Google Scholar 

  69. R.F. Walker, Microbalance techniques for high temperature applications, in Vacuum Microbalance Techniques, ed. by M.J. Katz (Plenum, New York, 1961), pp. 87–110

    Google Scholar 

  70. E.A. Gulbransen, K.F. Andrew, An enclosed physical chemistry laboratory: the vacuum microbalance, in Vacuum Microbalance Techniques, ed. by M.J. Katz (Plenum, New York, 1961), pp. 1–21

    Google Scholar 

  71. R.J. Kolenkow, P.W. Zitzewitz, A microbalance for magnetic susceptibility measurements, in Vacuum Microbalance Techniques, ed. by P.M. Waters (Plenum, New York, 1965), pp. 195–208

    Google Scholar 

  72. H. Mayer et al., On some modifications of a torsion microbalance for use in ultrahigh vacuum, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 75–84

    Google Scholar 

  73. H.R. Jenemann, The early history of balances based on electromagnetic and elektrodynamic force compensation, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), pp. 25–53

    Google Scholar 

  74. H.R. Jenemann, Die Waage des Chemikers—The Chemist’s Balance (DECHEMA, Frankfurt am Main, 1997)

    Google Scholar 

  75. R.L. Schwoebel, Beam microbalance design, construction and operation, in Microweighing in Vacuum and Controlled Environments, ed. by A.W. Czanderna, S.P. Wolsky (Elsevier, Amsterdam, 1980), pp. 59–93

    Google Scholar 

  76. F.A. Mauer, Analytical balance for rapid changes in weight. Rev. Sci. Instrum. 25, 598–602 (1954)

    ADS  Google Scholar 

  77. L. Cahn, H.R. Schultz, The Cahn recording GRAM electrobalance, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 29–44

    Google Scholar 

  78. W.E. Boggs, The adaption of the Cahn electrobalance control system to the automatic operation of a quartz-beam vacuum microbalance, in Vacuum Microbalance Techniques, ed. by A.W. Czanderna (Plenum, New York, 1967), pp. 45–58

    Google Scholar 

  79. T. Gast, Microweighing in vacuo with a magnetic suspension balance, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 45–54

    Google Scholar 

  80. C.H. Massen et al., Automated balances of the second generation. Thermochim. Acta 103, 1–4 (1986)

    Google Scholar 

  81. C.H. Massen et al., Computer simulation of balance handling. J. Therm. Anal. Calorim. 55(2), 367–370 (1999)

    Google Scholar 

  82. J.A. Poulis, C.H. Massen, E. Robens, Verfahren zur Ablesung einer schwingenden Anzeige, insbesondere von Waagen, in Offenlegungsschrift DE 197 30 070 A 1, Germany (1997)

    Google Scholar 

  83. J.A. Poulis, C.H. Massen, E. Robens, Verfahren zur Ablesung einer schwingenden Anzeige, insbesondere von Waagen, in Offenlegungsschrift DE 198 26 438 A 1. Germany (1998)

    Google Scholar 

  84. K. Horn, To make load-cell-scales settle faster, in XI IMEKO Congress, vol. 2 (1988), pp. 217–243

    Google Scholar 

  85. K. Horn, Verfahren und Meßeinrichtung zur Bestimmung mechanischer Meßgrößen, insbesondere eines unbekannten Gewichts, in Patentschrift DE 3743897 C2. Germany (1987)

    Google Scholar 

  86. C.H. Massen et al., Optimizing of balances of the second generation. J. Therm. Anal. Calorim. 55(2), 449–454 (1999)

    Google Scholar 

  87. C.H. Massen et al., Fast electromagnetic balance. J. Therm. Anal. Calorim. 71(1), 47–51 (2003)

    MathSciNet  Google Scholar 

  88. J.A. Poulis et al., Schnelle Wägung. Wägen Dos. Misch. 3, 11–13 (2003)

    Google Scholar 

  89. O. Jäntti, J. Junttila, E. Yrjänheikki, Mikropunnitusajan Lyhentämisestä Ekstrapolaatiomenetelmällä. (On curtailing the microweighing time by an extrapolation method). Suom. Kemistil., A 43, 214–218 (1970)

    Google Scholar 

  90. O. Jäntti, J. Junttila, E. Yrjänheikki, On curtailing the micro-weighing time by an extrapolation method, in Progress in Vacuum Microbalance Techniques, ed. by T. Gast, E. Robens (Heyden, London, 1972), pp. 345–353

    Google Scholar 

  91. E. Robens, C.H. Massen, On the applicability of Jäntti’s method of shortening sorption measurements. J. Therm. Anal. Calorim. 94(3), 711–714 (2008)

    Google Scholar 

  92. O. Jäntti, E. Robens, Computerised reduction of the weighing time required for the determination of adsorption isotherms on activated carbons. Thermochim. Acta 51, 67–75 (1981)

    Google Scholar 

  93. C.H. Massen, J.A. Poulis, E. Robens, Criticism on Jäntti’s three point method on curtailing gas adsorption measurements. Adsorption 6, 229–232 (2000)

    Google Scholar 

  94. E. Robens, J.A. Poulis, C.H. Massen, Fast measurements, fast evaluation, fast results, fast richtig. GIT Z. Labortechnik 46(5), 556–559 (2002)

    Google Scholar 

  95. C.H. Massen et al., Extension of the applicability of Jäntti’s method for fast calculation of desorption data. Adsorp. Sci. Technol. 18(10), 853–856 (2000)

    Google Scholar 

  96. J.A. Poulis et al., Fast adsorption measurements on silicium dioxide, in Theoretical and Experimental Studies of Interfacial Phenomena and Their Technological Applications: Book of Abstracts, VIII Ukrainian-Polish Symposium, ed. by Y. Tarasevich et al., September 19–24 2004, Sergijiwka–Odessa, Ukraine (SCSEIO, Odessa, 2004), pp. 258–263

    Google Scholar 

  97. J.A. Poulis, C.H. Massen, E. Robens, Measurement of gas adsorption with Jäntti’s method using continuously increasing pressure. J. Therm. Anal. Calorim. 68(2), 719–725 (2002)

    Google Scholar 

  98. J.A. Poulis, C.H. Massen, E. Robens, The Jäntti approach using a two-layers model. J. Therm. Anal. Calorim. 71(1), 61–66 (2003)

    Google Scholar 

  99. J.A. Poulis et al., The application of Jäntti’s method for the fast calculation of equilibrium in the case of multilayer adsorption, in Characterization of Porous Solids VI, ed. by F. Rodríguez-Reinoso et al. (Elsevier, Amsterdam, 2002), pp. 761–767

    Google Scholar 

  100. J.A. Poulis et al., Jäntti’s method for the fast measurement of adsorption combined with diffusion. Z. Phys. Chem. 218, 245–254 (2004)

    Google Scholar 

  101. J.A. Poulis et al., A fast two-point method for gas adsorption measurements, in Characterisation of Porous Solids, ed. by K.K. Unger, G. Kreysa, J.P. Baselt (Elsevier, Amsterdam, 1999), pp. 151–154

    Google Scholar 

  102. J.A. Poulis et al., The possible use of Jäntti’s method for the explanation of adsorption onto rough surfaces, in Analytical Forum, Book of Abstracts (Warszawa, 2004)

    Google Scholar 

  103. J.A. Poulis et al., The application of Jäntti’s method for the explanation of adsorption onto rough surfaces. J. Therm. Anal. Calorim., 39–42 (2006)

    Google Scholar 

  104. J.A. Poulis et al., Application of Jäntti’s method to volumetric adsorption measurements. J. Therm. Anal. Calorim. 76(2), 579–582 (2004)

    Google Scholar 

  105. J.A. Poulis et al., Evaluation of the applicability of Jäntti’s method to volumetric sorption measurements. J. Therm. Anal. Calorim. 86(1), 43–45 (2006)

    Google Scholar 

  106. E. Robens et al., Fast measurements of adsorption on porous materials using Jäntti’s method. Adsorp. Sci. Technol. 17(10), 801–804 (1999)

    Google Scholar 

  107. E. Robens, J.A. Poulis, C.H. Massen, Fast gas adsorption measurements for complicated adsorption mechanisms. J. Therm. Anal. Calorim. 62, 429–433 (2000)

    Google Scholar 

  108. J.A. Poulis et al., Introduction of new functions to speed up sorption measurements. Adsorption 12(3), 213–217 (2006)

    Google Scholar 

  109. J.A. Poulis et al., General application of Jäntti’s method for the fast calculation of sorption equilibrium. J. Therm. Anal. Calorim. 76(2), 583–592 (2004)

    Google Scholar 

  110. J.A. Poulis et al., A Jäntti approach for quick calculations of sorption equilibria. Z. Phys. Chem. 216, 1123–1135 (2002)

    Google Scholar 

  111. J.A. Poulis, C.H. Massen, E. Robens, Saving time when measuring BET isotherms. J. Colloid Interface Sci 311(2), 391–393 (2007)

    Google Scholar 

  112. I. Jenemann, S. Kiefer, E. Robens, Some intriguing items in the history of scientific balances. J. Therm. Anal. Calorim. (2008)

    Google Scholar 

  113. Anonymus, Weseler Edikte (Wesel, 1324–1600)

    Google Scholar 

  114. DIN (ed.), Internationales Wörterbuch der Metrologie (Beuth, Berlin, 1984)

    Google Scholar 

  115. DIN, DIN 51006: Thermische Analyse (TA) – Thermogravimetrie (TG) – Grundlagen (Beuth, Berlin, 2005)

    Google Scholar 

  116. E. Schneider, Daten zu Eiffelturm. http://www.baufachinformation.de/denkmalpflege.jsp?md=1988017121187 (2010)

  117. M. Kochsiek, M. Gläser (eds.), Comprehensive Mass Metrology (Wiley/VCH, Berlin, 2000)

    Google Scholar 

  118. W.M.F. Petrie, A Season in Egypt (London, 1888)

    Google Scholar 

  119. W.M.F. Petrie, Ancient Weights and Measures (London, 1926)

    Google Scholar 

  120. C.H. Massen et al., Investigation on a model for a large balance of the XVIII Egyptian dynasty, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), pp. 5–12

    Google Scholar 

  121. G.V. Childe, The prehistory of science: archaeological documents, Part 1, in The Evolution of Science, Readings from the History of Mankind, ed. by G.S. Metraux, F. Crouzet (New American Library/Mentor Books, New York, 1963), pp. 66–67

    Google Scholar 

  122. C. Seeber, in Untersuchungen zur Darstellung des Totengerichts im Alten Ägypten, ed. by H.W. Müller, Münchner Ägyptologische Studien, vol. 35 (Deutscher Kunstverlag, München, 1976)

    Google Scholar 

  123. Aristoteles, a.t. (ed.), Questiones mechanicae, ed. by P. Gohlke (Kleine Schriften zur Physik und Metaphysik, Paderborn, 1957)

    Google Scholar 

  124. Al-Chazini, Buch der Waage der Weisheit (Merw, 1120)

    Google Scholar 

  125. L. da Vinci, Codex atlanticus—Saggio del Codice atlantico, ed. by Aretin, vol. fol. 249 verso-a + fol. 8 verso-b (Milano, 1872)

    Google Scholar 

  126. H.R. Jenemann, Das Kilogramm der Archive vom 4. Messidor des Jahres 7: Konform mit dem Gesetz vom 18. Germinal des Jahres 3? in Genauigkeit und Präzision, ed. by D. Hoffmann, H. Witthöfft (Physikalisch-Technische Bundesanstalt, Braunschweig, 1996), pp. 183–213

    Google Scholar 

  127. H.R. Jenemann, Die Werkstatt von Paul Bunge: 100 Jahre Präzisionswaagenherstellung in Hamburg. Beitr. Dtsch. Volks- Altert.kd. 26, 169–188 (1988/1991)

    Google Scholar 

  128. H. Pettersson, A new micro-balance and its use. Diss. Stockholm, Göteborg’s Vet. of Vitterh. Samhalle’s Handlinger (Göteborg, 1914)

    Google Scholar 

  129. H. Pettersson, Experiments with a new micro-balance. Proc. Phys. Soc. Lond. 32, 209–221 (1919)

    Google Scholar 

  130. R. Strömberg, Adsorptionsmessungen mit einer verbesserten Mikrowaage. K. Sven. Vetensk.akad. Handl. III 6(2), 33–122 (1928)

    Google Scholar 

  131. R. Strömberg, Adsorption measurements with an improved microbalance. K. Sven. Vetensk.akad. Handl. III 6(2), 1–12 (1928)

    Google Scholar 

  132. A.W. Czanderna et al., Photoelectrically automated, bakeable, high-load ultramicrobalance. J. Vac. Sci. Technol. 13, 556–559 (1976)

    ADS  Google Scholar 

  133. U. Kilian, C. Weber, Lexikon der Physik, vol. 4 (Spektrum Akademischer Verlag, Heidelberg, 2000)

    Google Scholar 

  134. G. Böhme et al., Determination of relative weight changes of electrostatically suspended particles in the sub-microgram range, in Progress in Vacuum Microbalance Techniques, ed. by S.C. Bevan, S.J. Gregg, N.D. Parkyns (Heyden, London, 1973), pp. 169–174

    Google Scholar 

  135. R. Hooke, De Potentia Restitutiva or of Spring, explaining the Power of Springing Bodies. Lectiones Cutleriana or a collection of Lectures: Physical, Mechanical, Geographical, & Astronautical. Early Science in Oxford, vol. VIII (Gunther, London, 1678/9)

    Google Scholar 

  136. H.R. Jenemann, Robert Hooke und die frühe Geschichte der Federwaage. Ber. Wiss.gesch. 8, 121–130 (1985)

    Google Scholar 

  137. E. Robens, D. Möhlmann, Planning of gravimetric investigations on Mars. J. Therm. Anal. Calorim. 76(2), 671–675 (2004)

    Google Scholar 

  138. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)

    ADS  Google Scholar 

  139. P. Poncheral et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    ADS  Google Scholar 

  140. B. Ilic et al., Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694–3703 (2004)

    ADS  Google Scholar 

  141. S. Gupta, G. Morell, B.R. Weiner, Electron field-emission mechanism in nanostructured carbon films: a quest. J. Appl. Phys. 95(12), 8314–8320 (2004)

    ADS  Google Scholar 

  142. J. Wood, Mass detection finds new resonance. Mater. Today 4, 20 (2004)

    Google Scholar 

  143. LaHaye et al., Science 304, 74 (2004)

    ADS  Google Scholar 

  144. C. Sealy, Probing the quantum world with uncertainty. Mater. Today 6, 9 (2004)

    Google Scholar 

  145. U. Brand, Nanosensor misst gleichzeitig Kraft und Weg. Nachrichten und Presseeldungen aus Labor und Analytik (2013)

    Google Scholar 

  146. S. Arnold, E.-C. Reiff, Kraftmessung in nanoskopischen Dimensionen. LaborPraxis 7/8, 54–56 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robens, E., Jayaweera, S.A.A., Kiefer, S. (2014). Weighing. In: Balances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36447-1_3

Download citation

Publish with us

Policies and ethics