Skip to main content

Synthesis of an Advanced State Feedback Control for Continuous Nonlinear Polynomial Systems

  • Chapter
  • First Online:
Book cover Applied Methods and Techniques for Mechatronic Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 452))

  • 2014 Accesses

Abstract

In this chapter, the problem of approximate linearization of affine nonlinear control systems by a static state feedback is considered. First of all, we propose an analytical method, based on the development into generalized Taylor series expansions and the Kronecker product tools, in order to simplify the complex implementation of the input-state feedback linearization formalism. Next, to improve the synthesized polynomial feedback control, the genetic algorithm, as an optimization method, is used. Finally, the new approach presented in this work is applied to investigate the control problem of a chemical reactor. Moreover, we prove that the controlled process is locally asymptotically stable in a wide region around the operating point, in the Lyapunov sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacha A, Jerbi H (2008) Backward iteration approaches for the stability domain of estimation of discrete nonlinear polynomial systems. Int J Model Ident Control 5(4):313–319

    Google Scholar 

  2. Baili S, Guoyuan Q, Barend JVW (2012) Output feedback predictive control for uncertain non-linear switched systems. Int J Model Ident Control 17(3):195–205

    Google Scholar 

  3. Benhadj Braiek E, Rotella F (1995) State observer design for a class of nonlinear systems. SAMS 17:265–277

    Google Scholar 

  4. Bortoff S (1997) Approximate state-feedback linearization using spline functions. Automatica 33(8):1449–1458

    Article  MATH  MathSciNet  Google Scholar 

  5. Brewer J (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25(9):772–781

    Article  MATH  MathSciNet  Google Scholar 

  6. Camilli F, Grüne L, Wirth F (2000) Zubov’s method for perturbed differential equations. In: Proceedings of the mathematical theory of networks and systems

    Google Scholar 

  7. Chanchareon R, Pongsin N, Reeseewat P, Jiamluksanapaisal S (2006) Controller design based on computed feedback linearization. In: IEEE conference on robotics, automation and mechatronics, pp 1–6

    Google Scholar 

  8. Chiasson J, Bodson M (1993) Technical notes and correspondence. IEEE Trans Autom Control 38(11):1662–1666

    Article  MathSciNet  Google Scholar 

  9. Choi H, Lim J (2005) Stabilizing a class of nonlinear systems based on approximate feedback linearization. IEICE Trans Fundam E88-A(6):1626–1630

    Google Scholar 

  10. Dongkai Z, Chaoli W, Jiqing Q, Hua C (2012) State-feedback stabilisation for stochastic non-holonomic systems with Markovian switching. Int J Model Ident Control 16(3):212–228

    Article  Google Scholar 

  11. Fuh C (2009) Optimal control of chaotic systems with input saturation using an input-state linearization scheme. Commun Nonlinear Sci Numer Simul 14(8):3424–3431

    Article  Google Scholar 

  12. Garc’ıa-Sandoval J, Gonzalez-Alvarez V, Castillo-Toledo B, Pelayo-Ortiz C (2008) Robust discrete control of nonlinear processes: application to chemical reactors. Compu Chem Eng 32(12):3246–3253

    Article  Google Scholar 

  13. Ge S, Sun Z, Lee T (2001) Nonregular feedback linearization for a class of second-order nonlinear systems. Automatica 37(11):1819–1824

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-wesley, Boston

    Google Scholar 

  15. Guardabassi G, Savaresi S (2001) Approximate linearization via feedback-an overview. Automatica 37(1):1–15

    Article  MATH  MathSciNet  Google Scholar 

  16. Holland J (1992) Adaptation in natural and artifcial systems: an introductory analysis with applications to biology, control, and artifcial intelligence. The MIT Press, Cambridge

    Google Scholar 

  17. Hunt L, Su R, Meyer G (1983) Global transformations of nonlinear systems. IEEE Trans Autom Control 28(1):24–31

    Article  MATH  MathSciNet  Google Scholar 

  18. Isidori A (1995) Nonlinear control systems. Springer Verlag, New York

    Google Scholar 

  19. Jemai W, Jerbi H, Abdelkrim M (2010a) A method based on the Monte Carlo optimization schemes for the control of nonlinear polynomial systems. In: Proceedings of the 6th WSEAS international conference on Dynamical systems and control, pp 184–189. World Scientific and Engineering Academy and Society (WSEAS)

    Google Scholar 

  20. Jemai W, Jerbi H, Abdelkrim M (2010b) Synthesis of an approximate feedback nonlinear control based on optimization methods. WSEAS Trans Syst Control 5(8):646–655

    Google Scholar 

  21. Jemai W, Jerbi H, Abdelkrim M (2011) Nonlinear state feedback design for continuous polynomial systems. Int J Control Autom Syst (IJCAS) 9(3):566-573

    Google Scholar 

  22. Jianfeng L, Youmei L, Zhiwu H, Weihua G, Huosheng H (2012), Modelling and control design for an electro-pneumatic braking system in trains with multiple locomotives. 17(2):99–108

    Google Scholar 

  23. Johansen T, Hunt K (2000) A computational approach to approximate input/state feedback linearization. In: Proceedings of the 39th IEEE conference on decision and Control, vol 5, pp 4467–4472

    Google Scholar 

  24. Khalil H, Grizzle J (2002) Nonlinear systems. Prentice hall, New Jersey

    Google Scholar 

  25. Kowalski K, Steeb W (1991) Nonlinear dynamical systems and Carleman linearization. World Scientific Publishing Co. Pte, Ltd, Singapore

    Google Scholar 

  26. Lei C, Xiu-Juan Z, Huai-Yu W, Quan-Min Z, Yong-Ji W, Hassan N (2012) A new procedure for multi-mode sequential flocking with application to multiple non-holonomic mobile robot motion control: implementation and analysis. Int J Model Ident Control 16(1):50–59

    Article  Google Scholar 

  27. Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive and robust. Prentice Hall, New Jersey

    Google Scholar 

  28. McCann R (1979) Asymptotically stable dynamical systems are linear. Pac J Math 81(2): 475–479

    Google Scholar 

  29. Mehta S, Chiasson J (1998) Nonlinear control of a series DC motor: theory and experiment. IEEE Trans Industr Electron 45(1):134–141

    Article  Google Scholar 

  30. Nijmeijer H, Van der Schaft A (1990) Nonlinear dynamical control systems. Springer, New York

    Google Scholar 

  31. Ray W (1981) Advanced process control. McGraw-Hill Companies, New York

    Google Scholar 

  32. Rotella F, Dauphin-Tanguy G (1988) Nonlinear systems: identification and optimal control. Int J Control 48(2):525–544

    Article  MATH  MathSciNet  Google Scholar 

  33. Qi-ming F, Quan L, Xio-yan W, Le Z (2011) Relevance feedback techniques and genetic algorithm for image retrieval based on multiple features. Int J Model Ident Control 14(4): 279–285

    Google Scholar 

  34. Sivanandam S, Deepa S (2008) Introduction to genetic algorithms. Springer, Berlin, New York

    Google Scholar 

  35. Slotine J, Li W et al (1991) Applied nonlinear control. Prentice hall, Englewood Cliffs

    MATH  Google Scholar 

  36. Son J, Lim J (2008) Stabilization of approximately feedback linearizable systems using singular perturbation. IEEE Trans Autom Control 53(6):1499–1503

    Article  MathSciNet  Google Scholar 

  37. Sontag E (1998) Mathematical control theory: deterministic finite dimensional systems. Springer, Berlin

    Google Scholar 

  38. Su R (1982) On the linear equivalents of nonlinear systems. Syst Control Lett 2(1):48–52

    Article  MATH  Google Scholar 

  39. Tiaoping F, Shang YL (2011) An improved multi-objective particle swarm optimization algorithm. 12(1–2):66–71

    Google Scholar 

  40. Vannelli A, Vidyasagar M (1985) Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21(1):69–80

    Article  MATH  MathSciNet  Google Scholar 

  41. Vinodha R, Abraham Lincoln S (2011) Design and implementation of simple adaptive control schemes on simulated model of CSTR process. Int J Model Ident Control 14(3):159–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Jerbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jerbi, H., Jemai, W.J. (2014). Synthesis of an Advanced State Feedback Control for Continuous Nonlinear Polynomial Systems. In: Liu, L., Zhu, Q., Cheng, L., Wang, Y., Zhao, D. (eds) Applied Methods and Techniques for Mechatronic Systems. Lecture Notes in Control and Information Sciences, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36385-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36385-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36384-9

  • Online ISBN: 978-3-642-36385-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics