Skip to main content

High-Reflectivity, High-Q Mechanical Resonators

  • Chapter
  • First Online:
  • 1229 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In order to perform quantum optical experiments with macroscopic mechanical oscillators the mechanical systems have to fulfill a number of criterions

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.J. Leggett, Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002)

    Google Scholar 

  2. M. Arndt, M. Aspelmeyer, A. Zeilinger, How to extend quantum experiments. Fortschr. Phys. 57, 1153 (2009)

    Google Scholar 

  3. M. Aspelmeyer, Quantum mechanics: the surf is up. Nature 464, 685(2010)

    Google Scholar 

  4. D.A. Harrington, M.L. Roukes, Caltech Technical report No. CMP-106 (1994)

    Google Scholar 

  5. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Google Scholar 

  6. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)

    Google Scholar 

  7. H.R. Böhm, S. Gigan, G. Langer, J.B. Hertzberg, F. Blaser, D. Bäuerle, K.C. Schwab, A. Zeilinger, M. Aspelmeyer, High reflectivity high- Q micromechanical Bragg mirror. Appl. Phys. Lett. 89, 223101 (2006)

    Google Scholar 

  8. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992)

    Google Scholar 

  9. R.D. Blevins, Formulas for Natural Frequency and Mode Shape (Krieger, Malabar, 1984)

    Google Scholar 

  10. S.D. Penn, P.H. Sneddon, H. Armandula, J.C. Betzwieser, G. Cagnoli, J. Camp, D.R.M. Crooks, M.M. Fejer, A.M. Gretarsson, G.M. Harry, J. Hough, S.E. Kittelberger, M.J. Mortonson, R. Route, S. Rowan, C.C. Vassiliou, Mechanical loss in tantala/silica dielectric mirror coatings. Class. Quantum Gravity 20, 2917 (2003)

    Google Scholar 

  11. G.M. Harry, H. Armandula, E. Black, D.R.M. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M.M. Fejer, R. Route, S.D. Penn, Thermal noise from optical coatings in gravitational wave detectors. Appl. Opt. 45, 1569 (2006)

    Google Scholar 

  12. L. Sekaric, D.W. Carr, S. Evoy, J.M. Parpia, H.G. Craighead, Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues. Sens. Actuators A Phys. 101, 215 (2002)

    Google Scholar 

  13. S.S. Verbridge, H.G. Craighead, J.M. Parpia, A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008)

    Google Scholar 

  14. D.R. Southworth, R.A. Barton, S.S. Verbridge, B. Ilic, A.D. Fefferman, H.G. Craighead, J.M. Parpia, Stress and silicon nitride: a crack in the universal dissipation of glasses. Phys. Rev. Lett. 102, 225503 (2009)

    Google Scholar 

  15. P.W. Anderson, B.I. Halperin, C.M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1 (1972)

    Google Scholar 

  16. G.M. Harry, A.M. Gretarsson, P.R. Saulson, S.E. Kittelberger, S.D. Penn, W.J. Startin, S. Rowan, M.M. Fejer, D.R.M. Crooks, G. Cagnoli, J. Hough, N. Nakagawa, Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Gravity 19, 897 (2002)

    Google Scholar 

  17. I. Wilson-Rae, Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 77, 245418 (2008)

    Google Scholar 

  18. G.D. Cole, I. Wilson-Rae, M.R. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, M. Aspelmeyer, Megahertz monocrystalline optomechanical resonators with minimal dissipation, in 23rd IEEE International Conference on Microelectromechanical Systems, TP133, Hong Kong SAR, China, 24–28 Jan 2010 TP133

    Google Scholar 

  19. G.D. Cole, I. Wilson-Rae, K. Werbach, M.R. Vanner, M. Aspelmeyer, Phonon-tunneling dissipation in mechanical resonators. Nat. Commun. 2, 231 (2011)

    Google Scholar 

  20. C. Zener, Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230 (1937)

    Google Scholar 

  21. R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600 (2000)

    Google Scholar 

  22. A. Duwel, R.N. Candler, T.W. Kenny, M. Varghese, Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15, 1437 (2006)

    Google Scholar 

  23. G.D. Cole, S. Gröblacher, K. Gugler, S. Gigan, M. Aspelmeyer, Monocrystalline Al\(_x\)Ga\(_{1-x}\) As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl. Phys. Lett. 92, 261108 (2008)

    Google Scholar 

  24. C. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  25. G.D. Cole, Y. Bai, M. Aspelmeyer, E.A. Fitzgerald, Free-standing Al\(_x\)Ga\(_{1-x}\) As heterostructures by gas-phase etching of germanium. Appl. Phys. Lett. 96, 261102 (2010)

    Google Scholar 

  26. K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004)

    Google Scholar 

  27. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical back-action. Phys. Rev. Lett. 99, 093901 (2007)

    Google Scholar 

  28. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Google Scholar 

  29. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Google Scholar 

  30. S. Bose, K. Jacobs, P.L. Knight, Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Google Scholar 

  31. J. Zhang, K. Peng, S.L. Braunstein, Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Google Scholar 

  32. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Google Scholar 

  33. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard , A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Google Scholar 

  34. T.J. Kippenberg, K.J. Vahala, Cavity opto-mechanics. Opt. Express 15, 17172 (2007)

    Google Scholar 

  35. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008)

    Google Scholar 

  36. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)

    Google Scholar 

  37. S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhys. Lett. 81, 54003 (2008)

    Google Scholar 

  38. V. Braginsky, V. Mitrofanov, V. Panov, Systems with Small Dissipation (University of Chicago Press, Chicago, 1985)

    Google Scholar 

  39. K. Hjort, Ph.D. thesis, School Uppsala University, Uppsala, Sweden, 1993

    Google Scholar 

  40. H. Ukita, Y. Uenishi, H. Tanaka, A photomicrodynamic system with a mechanical resonator monolithically integrated with laser diodes on gallium arsenide. Science 260, 786 (1993)

    Google Scholar 

  41. E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222 (1987)

    Google Scholar 

  42. G.D. Cole, E.S. Bjorlin, C.S. Wang, N.C. MacDonald, J.E. Bowers, Widely tunable bottom-emitting vertical-cavity SOAs. IEEE Photon. Technol. Lett. 17, 2526 (2005)

    Google Scholar 

  43. M. Maute, B. Kögel, G. Böhm, P. Meissner, M.-C. Amann, MEMS-tunable 1.55-um VCSEL with extended tuning range incorporating a buried tunnel junction. IEEE Photon. Technol. Lett. 18, 688 (2006)

    Google Scholar 

  44. M.C. Huang, Y. Zhou, C.J. Chang-Hasnain, M.C. Huang, Y. Zhou, C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 1, 119 (2007)

    Google Scholar 

  45. Y.A. Akulova, Ph.D. thesis, School University of California, Santa Barbara, USA, 1998

    Google Scholar 

  46. T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, M. Otsubo, Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors. J. Vac. Sci. Technol. B 15, 167 (1997)

    Google Scholar 

  47. D. Rugar, H.J. Mamin, P. Guethner, Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588 (1989)

    Google Scholar 

  48. S.S. Rao, Mechanical Vibrations (Addison-Wesley, Massachusetts, 1990)

    Google Scholar 

  49. J.G.E. Harris, D.D. Awschalom, K.D. Maranowski, A.C. Gossard, Magnetization and dissipation measurements in the quantum Hall regime using an integrated micromechanical magnetometer. J. Appl. Phys. 87, 5102 (2000)

    Google Scholar 

  50. P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 085416 (2002)

    Google Scholar 

  51. T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar, Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288 (1997)

    Google Scholar 

  52. H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegscheider, Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems. Appl. Phys. Lett. 81, 3879 (2002)

    Google Scholar 

  53. N.G. Stoltz, M. Rakher, S. Strauf, A. Badolato, D.D. Lofgreen, P.M. Petroff, L.A. Coldren, D. Bouwmeester, High-quality factor optical microcavities using oxide apertured micropillars. Appl. Phys. Lett. 87, 031105 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gröblacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gröblacher, S. (2012). High-Reflectivity, High-Q Mechanical Resonators. In: Quantum Opto-Mechanics with Micromirrors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34955-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34955-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34954-6

  • Online ISBN: 978-3-642-34955-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics