Skip to main content

Remarks on Invariance in the Primary Visual Systems of Mammals

  • Chapter
Book cover Neuromathematics of Vision

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

Poincaré observed that the perception of space is based on active movements, and relies on the notions of invariance, covariation between sensors and environment, and active compensation ( [179], [180], [181], [182]). The research of Piaget has proved the importance of various kinds of geometrical invariance in cognitive and behaviorial development ( [173], [177], [176]). To him intelligence is a form of adaptation, the continuous process of using the environment for learning ( [174]). Adaptation is a process that can happen at the scale of evolution, development or functioning. In ecology, or in population biology and genetics, it means the adjustment or change in behavior, physiology, and structure of an organism to become more suited to an environment, thus better fitted to survive and passing their genes on to the next generation (Darwin plus Mendel, [45]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.H., Dayan, P.: Theoretical Neuroscience. In: Computational and Mathematical Modeling of Neural Systems. Computational Neuroscience series, vol. 15, MIT Press, Cambridge (2001)

    Google Scholar 

  2. Abel, N.H.: Oeuvres complètes, vol. 1. C. Gröndahl (1839)

    Google Scholar 

  3. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–299 (1985)

    Google Scholar 

  4. Adler, R.J., Taylor, J.E.: Random fields and geometry, vol. 115. Springer (2007)

    Google Scholar 

  5. Aggoun-Zouaoui, D., Kiper, D.C., Innocenti, G.M.: Growth of callosal terminal arbors in primary visual areas of the cat. European Journal of Neuroscience 8(6), 1132–1148 (1996)

    Google Scholar 

  6. Akerman, C.J., Smyth, D., Thompson, I.D.: Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36(5), 869–879 (2002)

    Google Scholar 

  7. Albrecht, D.G., Geisler, W.S., et al.: Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7(6), 531–546 (1991)

    Google Scholar 

  8. Alitto, H.J., Usrey, W.M.: Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. Journal of Neurophysiology 91(6), 2797–2808 (2004)

    Google Scholar 

  9. Amari, S.-I.: Differential geometric methods in statistics. Lecture Notes in Statistics, vol. 28 (1985)

    Google Scholar 

  10. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J.: The hippocampus book. Oxford University Press (2006)

    Google Scholar 

  11. Angelaki, D.E., Gu, Y., DeAngelis, G.C.: Multisensory integration: psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology 19(4), 452–458 (2009)

    Google Scholar 

  12. Armstrong, D.M., Marple-Horvat, D.E.: Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion. Canadian Journal of Physiology and Pharmacology 74(4), 443–455 (1996)

    Google Scholar 

  13. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps: Monodromy and asymptotics of integrals, vol. 83. Springer (2012)

    Google Scholar 

  14. Atick, J.J., Redlich, A.N.: What does the retina know about natural scenes? Neural Computation 4(2), 196–210 (1992)

    Google Scholar 

  15. Baizer, J.S., Whitney, J., Bender, D.: Bilateral projections from the parabigeminal nucleus to the superior colliculus in monkey. Experimental Brain Research 86(3), 467–470 (1991)

    Google Scholar 

  16. Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: An uncertainty principle underlying the functional architecture of V1. Journal of Physiology-Paris 106(5), 183–193 (2012)

    Google Scholar 

  17. Barlow, H.B.: Possible principles underlying the transformation of sensory messages. Sensory Communication, pp. 217–234 (1961)

    Google Scholar 

  18. Basole, A., White, L.E., Fitzpatrick, D.: Mapping multiple features in the population response of visual cortex. Nature 423(6943), 986–990 (2003)

    Google Scholar 

  19. Baudot, P.: Natural computation, much ado about nothing? Doctorat sciences cognitives. University Paris VI, Pierre et Marie Curie (November 2006)

    Google Scholar 

  20. Bednar, J.A.: Building a mechanistic model of the development and function of the primary visual cortex. Journal of Physiology-Paris 106(5), 194–211 (2012)

    Google Scholar 

  21. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Google Scholar 

  22. Bennequin, D.: Caustique mystique. Séminaire Bourbaki 27, 19–56 (1984)

    Google Scholar 

  23. Bennequin, D.: Questions de physique galoisienne. In: Porte, M. (ed.) Passion des Formes, à René Thom (ENS Editions, Fontenay-Saint Cloud), pp. 311–410 (1994)

    Google Scholar 

  24. Bennequin, D., Berthoz, A.: Non-linear galilean vestibular receptive fields. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 2273–2276. IEEE (2011)

    Google Scholar 

  25. Bennequin, D., Fuchs, R., Berthoz, A., Flash, T.: Movement timing and invariance arise from several geometries. PLoS Computational Biology 5(7), e1000426 (2009)

    Google Scholar 

  26. Berry, M.V., Dennis, M.R.: Phase singularities in isotropic random waves. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456(2001), 2059–2079 (2001)

    MathSciNet  Google Scholar 

  27. Berthoz, A.: Le sens du mouvement. Odile Jacob (1997)

    Google Scholar 

  28. Berthoz, A.: La décision. Odile Jacob (2003)

    Google Scholar 

  29. Bienenstock, E., von der Malsburg, C.: A neural network for invariant pattern recognition. EPL (Europhysics Letters) 4(1), 121 (1987)

    Google Scholar 

  30. Bonhoeffer, T., Grinvald, A.: Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353(6343), 429–431 (1991)

    Google Scholar 

  31. Bonnasse-Gahot, L., Nadal, J.-P.: Perception of categories: from coding efficiency to reaction times. Brain Research 1434, 47–61 (2012)

    Google Scholar 

  32. Bosking, W.H., Kretz, R., Pucak, M.L., Fitzpatrick, D.: Functional specificity of callosal connections in tree shrew striate cortex. The Journal of Neuroscience 20(6), 2346–2359 (2000)

    Google Scholar 

  33. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. The Journal of Neuroscience 17(6), 2112–2127 (1997)

    Google Scholar 

  34. Bourbaki, N.: Lie groups and lie algebras, vol. 7, ch. 7-9. Springer (2008)

    Google Scholar 

  35. Bowling, D.B., Michael, C.R.: Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus. The Journal of Neuroscience 4(1), 198–216 (1984)

    Google Scholar 

  36. Bressoud, R., Innocenti, G.M.: Typology, early differentiation, and exuberant growth of a set of cortical axons. Journal of Comparative Neurology 406(1), 87–108 (1999)

    Google Scholar 

  37. Bruhat, F., Ramanan, S.: Lectures on Lie groups and representations of locally compact groups, vol. 14. Tata Institute of Fundamental Research (1958)

    Google Scholar 

  38. Brunel, N., Nadal, J.-P.: Mutual information, fisher information, and population coding. Neural Computation 10(7), 1731–1757 (1998)

    Google Scholar 

  39. Butts, D.A., Weng, C., Jin, J., Alonso, J.-M., Paninski, L.: Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. The Journal of Neuroscience 31(31), 11313–11327 (2011)

    Google Scholar 

  40. Butts, D.A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N.A., Alonso, J.-M., Stanley, G.B.: Temporal precision in the neural code and the timescales of natural vision. Nature 449(7158), 92–95 (2007)

    Google Scholar 

  41. Cadieu, C., Kouh, M., Pasupathy, A., Connor, C.E., Riesenhuber, M., Poggio, T.: A model of v4 shape selectivity and invariance. Journal of Neurophysiology 98(3), 1733–1750 (2007)

    Google Scholar 

  42. Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L., Rust, N.C.: Do we know what the early visual system does? The Journal of Neuroscience 25(46), 10577–10597 (2005)

    Google Scholar 

  43. Casagrande, V.A., Condo, G.J.: The effect of altered neuronal activity on the development of layers in the lateral geniculate nucleus. The Journal of Neuroscience 8(2), 395–416 (1988)

    Google Scholar 

  44. Chalupa, L.M., Werner, J.S., Barnstable, C.J.: The visual neurosciences, vol. 1. MIT Press, Cambridge (2004)

    Google Scholar 

  45. Charlesworth, B., Charlesworth, D.: Darwin and genetics. Genetics 183(3), 757–766 (2009)

    Google Scholar 

  46. Chossat, P., Faugeras, O.: Hyperbolic planforms in relation to visual edges and textures perception. PLoS Computational Biology 5(12), e1000625 (2009)

    Google Scholar 

  47. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons (2012)

    Google Scholar 

  48. Dahlke, S., Maass, P.: The affine uncertainty principle in one and two dimensions. Computers & Mathematics with Applications 30(3), 293–305 (1995)

    MATH  MathSciNet  Google Scholar 

  49. DeAngelis, G.C., Ghose, G.M., Ohzawa, I., Freeman, R.D.: Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. The Journal of Neuroscience 19(9), 4046–4064 (1999)

    Google Scholar 

  50. de Rham, G.: Variétés différentiables. Hermann, Paris (1955)

    Google Scholar 

  51. De Zeeuw, C.I., Hansel, C., Bian, F., Koekkoek, S.K., van Alphen, A.M., Linden, D.J., Oberdick, J.: Expression of a protein kinase C inhibitor in purkinje cells blocks cerebellar ltd and adaptation of the vestibulo-ocular reflex. Neuron 20(3), 495–508 (1998)

    Google Scholar 

  52. Dellacherie, C., Meyer, P.A.: Probability and potential. Hermann, Paris (1978)

    Google Scholar 

  53. Derrington, A.M., Krauskopf, J., Lennie, P.: Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology 357(1), 241–265 (1984)

    Google Scholar 

  54. Devernay, F., Faugeras, O.: From projective to euclidean reconstruction. In: Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1996, pp. 264–269. IEEE (1996)

    Google Scholar 

  55. Dixon, E.R.: Spectral distribution of australian daylight. JOSA 68(4), 437–450 (1978)

    Google Scholar 

  56. Dragoi, V., Rivadulla, C., Sur, M.: Foci of orientation plasticity in visual cortex. Nature 411(6833), 80–86 (2001)

    Google Scholar 

  57. Droulez, J., Bennequin, D.: Perception des symétries et invariances perceptives. In: Siksou, M. (ed.) Symétries, Symétries et Asymétries du Vivant, pp. 155–171. Lavoisier (2005)

    Google Scholar 

  58. Dudkin, E.A., Sheffield, J.B., Gruberg, E.R.: Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, rana pipiens. Journal of Comparative Neurology 502(1), 38–54 (2007)

    Google Scholar 

  59. Eatock, R.A., Corey, D.P., Hudspeth, A.J.: Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. The Journal of Neuroscience 7(9), 2821–2836 (1987)

    Google Scholar 

  60. Eccles, J.C., Llinas, R., Sasaki, K.: The excitatory synaptic action of climbing fibres on the purkinje cells of the cerebellum. The Journal of Physiology 182(2), 268–296 (1966)

    Google Scholar 

  61. Eilenberg, S., Steenrod, N.: Foundations of algebraic topology, Princeton NJ, vol. 952 (1952)

    Google Scholar 

  62. Elberger, A.J.: The functional role of the corpus callosum in the developing visual system: a review. Progress in Neurobiology 18(1), 15–79 (1982)

    Google Scholar 

  63. Emmons, L.H.: Tupai: a field study of Bornean treeshrews, vol. 2. University of California Pr (2000)

    Google Scholar 

  64. Ferraro, M., Caelli, T.M.: Lie transformation groups, integral transforms, and invariant pattern recognition. Spatial Vision 8(1), 33–44 (1994)

    Google Scholar 

  65. Findlay, J.M., Gilchrist, I.D.: Active vision: The psychology of looking and seeing. Oxford University Press (2003)

    Google Scholar 

  66. Fitzpatrick, D.: The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cerebral Cortex 6(3), 329–341 (1996)

    MathSciNet  Google Scholar 

  67. Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3(2), 194–200 (1991)

    Google Scholar 

  68. Foubert, L.: Spatio-temporal characteristics of the visual interhemispheric integration via the corpus callosum: computational modeling & optical imaging approaches. PhD thesis, Université Pierre et Marie Curie-Paris VI (2007)

    Google Scholar 

  69. Foubert, L., Bennequin, D., Thomas, M.-A., Droulez, J., Milleret, C.: Interhemispheric synchrony in visual cortex and abnormal postnatal visual experience. Frontiers in Bioscience: A Journal and Virtual Library 15, 681 (2010)

    Google Scholar 

  70. Galois, É.: Œuvres mathématiques. Gauthier-Villars et fils (1897)

    Google Scholar 

  71. Gibson, J.J.: Adaptation, after-effect and contrast in the perception of curved lines. Journal of Experimental Psychology 16(1) (1933)

    Google Scholar 

  72. Gibson, J.J.: Perception of the visual world. Houghton-Mifflin, Boston (1950)

    Google Scholar 

  73. Gibson, J.J.: Optical motions and transformations as stimuli for visual perception. Journal of Experimental Psychology 64(5), 288–295 (1957)

    Google Scholar 

  74. Gibson, J.J., Gibson, E.J.: Continuous perspective transformations and the perception of rigid motion. Journal of Experimental Psychology 54(2), 129–138 (1957)

    MathSciNet  Google Scholar 

  75. Goldberg, J.M., Wilson, V.J., Cullen, K.E.: The Vestibular System: A Sixth Sense. Oxford University Press (2012)

    Google Scholar 

  76. González-Burgos, G., Barrionuevo, G., Lewis, D.A.: Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cerebral Cortex 10(1), 82–92 (2000)

    Google Scholar 

  77. Graf, W., Baker, R.: Adaptive changes of the vestibulo-ocular reflex in flatfish are achieved by reorganization of central nervous pathways. Science 221(4612), 777–779 (1983)

    Google Scholar 

  78. Graybiel, A.M.: Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Research 143(2), 339–348 (1978)

    Google Scholar 

  79. Grothendieck, A., Verdier, J.-L.: Théorie des topos (sga 4, exposés i-vi). Springer Lecture Notes in Math. 269, 270 (1972)

    MathSciNet  Google Scholar 

  80. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Google Scholar 

  81. Haider, B., Krause, M.R., Duque, A., Yu, Y., Touryan, J., Mazer, J.A., McCormick, D.A.: Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65(1), 107–121 (2010)

    Google Scholar 

  82. Hebb, D.O.: The organization of Behavior (1949)

    Google Scholar 

  83. Helgason, S.: Groups & Geometric Analysis: Radon Transforms. Invariant Differential Operators and Spherical Functions. Academic Press (1984)

    Google Scholar 

  84. von Helmholtz, H.: The Origin and Meaning of Geometrical Axioms. Mind (3), 301–321 (1876)

    Google Scholar 

  85. Herikstad, R., Baker, J., Lachaux, J.-P., Gray, C.M., Yen, S.-C.: Natural movies evoke spike trains with low spike time variability in cat primary visual cortex. The Journal of Neuroscience 31(44), 15844–15860 (2011)

    Google Scholar 

  86. Houzel, J.-C., Milleret, C., Innocenti, G.: Morphology of callosal axons interconnecting areas 17 and 18 of the cat. European Journal of Neuroscience 6(6), 898–917 (1994)

    Google Scholar 

  87. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology 148(3), 574–591 (1959)

    Google Scholar 

  88. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology 160(1), 106–154 (1962)

    Google Scholar 

  89. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195(1), 215–243 (1968)

    Google Scholar 

  90. James Hudspeth, A.: Mechanical amplification of stimuli by hair cells. Current Opinion in Neurobiology 7(4), 480–486 (1997)

    Google Scholar 

  91. Hudspeth, A.J., Choe, Y., Mehta, A.D., Martin, P.: Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences 97(22), 11765–11772 (2000)

    Google Scholar 

  92. Inaba, N., Shinomoto, S., Yamane, S., Takemura, A., Kawano, K.: MST neurons code for visual motion in space independent of pursuit eye movements. Journal of Neurophysiology 97(5), 3473–3483 (2007)

    Google Scholar 

  93. Innocenti, G.M., Price, D.J.: Exuberance in the development of cortical networks. Nature Reviews Neuroscience 6(12), 955–965 (2005)

    Google Scholar 

  94. Isik, L., Leibo, J.Z., Poggio, T.: Learning and disrupting invariance in visual recognition with a temporal association rule. Frontiers in Computational Neuroscience 6 (2012)

    Google Scholar 

  95. Issa, N.P., Trepel, C., Stryker, M.P.: Spatial frequency maps in cat visual cortex. The Journal of Neuroscience 20(22), 8504–8514 (2000)

    Google Scholar 

  96. Itzykson, C., Zuber, J.B.: Quantum field theory (1980)

    Google Scholar 

  97. Izhikevitch, E.M.: Dynamical systems in neuroscience (2007)

    Google Scholar 

  98. Jacobs, G.H.: The distribution and nature of colour vision among the mammals. Biological Reviews 68(3), 413–471 (1993)

    Google Scholar 

  99. Johnson, K., Wright, W.: Reply to philipona and O’ regan. Visual Neuroscience 25(02), 221–224 (2008)

    Google Scholar 

  100. Jordan, G., Deeb, S.S., Bosten, J.M., Mollon, J.D.: The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision 10(8) (2010)

    Google Scholar 

  101. Judd, D.B., MacAdam, D.L., Wyszecki, G., Budde, H.W., Condit, H.R., Henderson, S.T., Simonds, J.L.: Spectral distribution of typical daylight as a function of correlated color temperature. JOSA 54(8), 1031–1040 (1964)

    Google Scholar 

  102. Kalisa, C., Torrésani, B.: N-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. H. Poincaré, Physique Théorique 59, 201–236 (1993)

    MATH  Google Scholar 

  103. Kanatani, K.-I.: Transformation of optical flow by camera rotation. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(2), 131–143 (1988)

    Google Scholar 

  104. Kanizsa, G.: Organization in vision: Essays on Gestalt perception. Praeger, New York (1979)

    Google Scholar 

  105. Kappers, A.M.L., Todd, J.T., Oomes, S., Koenderink, J.J.: The intrinsic geometry of perceptual space: its metrical, affine and projective properties. In: Proceedings of the Fifteenth Annual Meeting of the International Society for Psychophysics, pp. 169–174. Arizona State University, Department of Psychology & Industrial Engineering (1999)

    Google Scholar 

  106. Kaschube, M., Schnabel, M., Löwel, S., Coppola, D.M., White, L.E., Wolf, F.: Universality in the evolution of orientation columns in the visual cortex. Science 330(6007), 1113–1116 (2010)

    Google Scholar 

  107. Kastner, S., Nothdurft, H.-C., Pigarev, I.N.: Neuronal correlates of pop-out in cat striate cortex. Vision Research 37(4), 371–376 (1997)

    Google Scholar 

  108. Kennedy, H., Dehay, C., Bullier, J.: Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey. Journal of Comparative Neurology 247(3), 398–415 (1986)

    Google Scholar 

  109. Khaytin, I., Chen, X., Royal, D.W., Ruiz, O., Jermakowicz, W.J., Siegel, R.M., Casagrande, V.A.: Functional organization of temporal frequency selectivity in primate visual cortex. Cerebral Cortex 18(8), 1828–1842 (2008)

    Google Scholar 

  110. Kirillov, A.A.: Introduction to the theory of representations and noncommutative harmonic analysis. In: Representation Theory and Noncommutative Harmonic Analysis I, pp. 1–156. Springer (1994)

    Google Scholar 

  111. Knierim, J.J., Van Essen, D.C.: Neuronal responses to static texture patterns in area v1 of the alert macaque monkey. Journal of Neurophysiology 67(4), 961–980 (1992)

    Google Scholar 

  112. Koenderink, J.J.: Optic flow. Vision Research 26(1), 161–179 (1986)

    Google Scholar 

  113. Koenderink, J.J.: Color for the Sciences. MIT Press (2010)

    Google Scholar 

  114. Koenderink, J.J., van Doorn, A.J.: Pictorial space, pp. 239–299 (2003)

    Google Scholar 

  115. Koenderink, J.J., van Doorn, A.J.: Facts on optic flow. Biological Cybernetics 56(4), 247–254 (1987)

    MATH  Google Scholar 

  116. Krantz, D.H.: Color measurement and color theory: I. representation theorem for grassmann structures. Journal of Mathematical Psychology 12(3), 283–303 (1975)

    MATH  MathSciNet  Google Scholar 

  117. Kretz, R., Rager, G.: Postnatal development of area 17 callosal connections in tupaia. Journal of Comparative Neurology 326(2), 217–228 (1992)

    Google Scholar 

  118. Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, P.A.: Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6), 1126–1141 (2008)

    Google Scholar 

  119. Lagae, L., Maes, H., Raiguel, S., Xiao, D.K., Orban, G.A.: Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. Journal of Neurophysiology 71(5), 1597–1626 (1994)

    Google Scholar 

  120. Land, M.F., Nilsson, D.-E.: Animal eyes. Oxford University Press (2012)

    Google Scholar 

  121. Laughlin, S.B.: The role of sensory adaptation in the retina. Journal of Experimental Biology 146(1), 39–62 (1989)

    Google Scholar 

  122. Goff, L.L., Bozovic, D., Hudspeth, A.J.: Adaptive shift in the domain of negative stiffness during spontaneous oscillation by hair bundles from the internal ear. Proceedings of the National Academy of Sciences of the United States of America 102(47), 16996–17001 (2005)

    Google Scholar 

  123. Lee, T.S.: Dynamics of subjective contour formation in the early visual cortex. Proceedings of the National Academy of Sciences 98(4), 1907–1911 (2001)

    Google Scholar 

  124. Lennie, P., Krauskopf, J., Sclar, G.: Chromatic mechanisms in striate cortex of macaque. The Journal of Neuroscience 10(2), 649–669 (1990)

    Google Scholar 

  125. Llinás, R.R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886), 1654–1664 (1988)

    Google Scholar 

  126. Llinás, R.R.: I of the vortex: From neurons to self. MIT press (2002)

    Google Scholar 

  127. Looijenga, E.: A period mapping for certain semi-universal deformations. Compositio Mathematica 30(3), 299–316 (1975)

    MATH  MathSciNet  Google Scholar 

  128. Looijenga, E.: The discriminant of a real simple singularity. Compositio Mathematica 37(1), 51–62 (1978)

    MATH  MathSciNet  Google Scholar 

  129. Lorenceau, J., Baudot, P., Series, P., Georges, S., Pananceau, M., Frégnac, Y.: Modulation of apparent motion speed by horizontal intracortical dynamics. Journal of Vision 1(3), 400–400 (2001)

    Google Scholar 

  130. Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  131. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Google Scholar 

  132. Lowel, S., Singer, W.: Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255(5041), 209–212 (1992)

    Google Scholar 

  133. Lane, S.M.: Categories for the working mathematician, vol. 5. Springer (1998)

    Google Scholar 

  134. Malach, R., Amir, Y., Harel, M., Grinvald, A.: Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences 90(22), 10469–10473 (1993)

    Google Scholar 

  135. Maloney, L.T., Wandell, B.A.: Color constancy: a method for recovering surface spectral reflectance. JOSA A 3(1), 29–33 (1986)

    Google Scholar 

  136. Mante, V., Carandini, M.: Mapping of stimulus energy in primary visual cortex. Journal of Neurophysiology 94(1), 788–798 (2005)

    Google Scholar 

  137. Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. Henry holt and co. Inc., New York (1982)

    Google Scholar 

  138. Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Computational Biology 3(2), e31 (2007)

    Google Scholar 

  139. Matsuda, H.: Physical nature of higher-order mutual information: Intrinsic correlations and frustration. Physical Review E 62(3), 3096 (2000)

    Google Scholar 

  140. McIntyre, J., Berthoz, A., Lacquaniti, F.: Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments? Brain Research Reviews 28(1), 143–154 (1998)

    Google Scholar 

  141. Merleau-Ponty, M.M.: L’oeil et l’esprit. Gallimard (1964)

    Google Scholar 

  142. Merriam, E.P., Genovese, C.R., Colby, C.L.: Remapping in human visual cortex. Journal of Neurophysiology 97(2), 1738–1755 (2007)

    Google Scholar 

  143. Miao, X., Rao, R.P.N.: Learning the Lie groups of visual invariance. Neural Computation 19(10), 2665–2693 (2007)

    MATH  MathSciNet  Google Scholar 

  144. Michael, C.R.: Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. Proceedings of the National Academy of Sciences 85(13), 4914–4918 (1988)

    Google Scholar 

  145. Milleret, C., Houzel, J.-C., Buser, P.: Pattern of development of the callosal transfer of visual information to cortical areas 17 and 18 in the cat. European Journal of Neuroscience 6(2), 193–202 (1994)

    Google Scholar 

  146. Mooser, F., Bosking, W.H., Fitzpatrick, D.: A morphological basis for orientation tuning in primary visual cortex. Nature Neuroscience 7(8), 872–879 (2004)

    Google Scholar 

  147. Morrone, M.C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., Burr, D.C.: A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience 3(12), 1322–1328 (2000)

    Google Scholar 

  148. Mukamel, R., Ekstrom, A.D., Kaplan, J., Iacoboni, M., Fried, I.: Single-neuron responses in humans during execution and observation of actions. Current Biology 20(8), 750–756 (2010)

    Google Scholar 

  149. Munuera, J., Morel, P., Duhamel, J.-R., Deneve, S.: Optimal sensorimotor control in eye movement sequences. The Journal of Neuroscience 29(10), 3026–3035 (2009)

    Google Scholar 

  150. Nadal, J.-P., Brunel, N., Parga, N.: Nonlinear feedforward networks with stochastic outputs: infomax implies redundancy reduction. Network: Computation in Neural Systems 9(2), 207–217 (1998)

    MATH  Google Scholar 

  151. Nakamura, K., Colby, C.L.: Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of the National Academy of Sciences 99(6), 4026–4031 (2002)

    Google Scholar 

  152. Nandy, A.S., Sharpee, T.O., Reynolds, J.H., Mitchell, J.F.: The fine structure of shape tuning in area v4. Neuron 78(6), 1102–1115 (2013)

    Google Scholar 

  153. Nauhaus, I., Busse, L., Carandini, M., Ringach, D.L.: Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience 12(1), 70–76 (2008)

    Google Scholar 

  154. Niebur, E., Wörgötter, F.: Design principles of columnar organization in visual cortex. Neural Computation 6(4), 602–614 (1994)

    Google Scholar 

  155. Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., Reid, C.: Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105), 925–928 (2006)

    Google Scholar 

  156. Ohki, K., Reid, R.C.: Specificity and randomness in the visual cortex. Current Opinion in Neurobiology 17(4), 401–407 (2007)

    Google Scholar 

  157. Ohzawa, I., DeAngelis, G.C., Freeman, R.D.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249(4972), 1037–1041 (1990)

    Google Scholar 

  158. Ohzawa, I., DeAngelis, G.C., Freeman, R.D.: Encoding of binocular disparity by complex cells in the cat’s visual cortex. Journal of Neurophysiology 77(6), 2879–2909 (1997)

    Google Scholar 

  159. Ohzawa, I., Freeman, R.D.: The binocular organization of complex cells in the cat’s visual cortex. Journal of Neurophysiology 56(1), 243–259 (1986)

    Google Scholar 

  160. Olavarria, J.F.: Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex. Journal of Comparative Neurology 366(4), 643–655 (1996)

    Google Scholar 

  161. Olshausen, B.A., et al.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Google Scholar 

  162. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research 37(23), 3311–3325 (1997)

    Google Scholar 

  163. Oomes, A.H.J., Todd, J.T., Koenderink, J.J., Kappers, A.M.L.: Varignon in visual space. In: Perception, vol. 29, p. 51. Pion LTD 207 Brondesbury Park, London NW2 5JN (2000)

    Google Scholar 

  164. Pasupathy, A.: Neural basis of shape representation in the primate brain. Progress in Brain Research 154, 293–313 (2006)

    Google Scholar 

  165. Payne, B., Peters, A.: The cat primary visual cortex. Academic Press (2001)

    Google Scholar 

  166. Pellionisz, A., Llinás, R.: Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscience 5(7), 1125–1136 (1980)

    Google Scholar 

  167. Pellionisz, A., Llinás, R.: Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience 16(2), 245–273 (1985)

    Google Scholar 

  168. Petitot, J.: Neurogéométrie de la vision: modèles mathématiques et physiques des architectures fonctionnelles. Editions Ecole Polytechnique (2008)

    Google Scholar 

  169. Pham, Q.-C., Bennequin, D.: Affine invariance of human hand movements: a direct test. arXiv preprint arXiv:1209.1467 (2012)

    Google Scholar 

  170. Philipona, D., O’Regan, K.: Reply to johnson and wright. Visual Neuroscience 25(2), 225–226 (2008)

    Google Scholar 

  171. Philipona, D., O’Regan, K., Nadal, J.-P.: Is there something out there? inferring space from sensorimotor dependencies. Neural Computation 15(9), 2029–2049 (2003)

    MATH  Google Scholar 

  172. Philipona, D.L., O’ Regan, K.: Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Visual Neuroscience 23(3/4), 331 (2006)

    Google Scholar 

  173. Piaget, J.: Les notions de mouvement et de vitesse chez l’enfant. Presses Univ. de France (1946)

    Google Scholar 

  174. Piaget, J.: La naissance de l’intelligence chez l’enfant, 2nd edn. Delachaux et Niestlé (1948)

    Google Scholar 

  175. Piaget, J., Henriques, G., Ascher, E., Coll: Morphismes et catégories: comparer et transformer. Delachaux et Niestlé, 2nd edn (1990)

    Google Scholar 

  176. Piaget, J., Inhelder, B.: La représentation de l’espace chez l’enfant. Presses Universitaires de France (1948)

    Google Scholar 

  177. Piaget, J., Inhelder, B., Szeminska, A.: La géométrie spontanée de l’enfant. Presses Universitaires de France (1948)

    Google Scholar 

  178. Pierrot-Deseilligny, C., Milea, D., Müri, R.M.: Eye movement control by the cerebral cortex. Current Opinion in Neurology 17(1), 17–25 (2004)

    Google Scholar 

  179. Poincaré, H.: La Science et l’hypothèse. Flammarion (1902)

    Google Scholar 

  180. Poincaré, H.: La Valeur de la science. Bibliothèque de philosophie scientifique. Flammarion (1905)

    Google Scholar 

  181. Poincaré, H.: Science et méthode. Bibliothèque de philosophie scientifique. Flammarion (1908)

    Google Scholar 

  182. Poincaré, H.: Dernières Pensées. Bibliothèque de philosophie scientifique. Flammarion (1913)

    Google Scholar 

  183. Pollen, D.A., Ronner, S.F.: Phase relationships between adjacent simple cells in the visual cortex. Science 212(4501), 1409–1411 (1981)

    Google Scholar 

  184. Ribot, J., Aushana, Y., Bui-Quoc, E., Milleret, C.: Organization and origin of spatial frequency maps in cat visual cortex. The Journal of Neuroscience 33(33), 13326–13343 (2013)

    Google Scholar 

  185. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Google Scholar 

  186. Rochefort, N., Buzás, P., Quenech’Du, N., Koza, A., Eysel, U.T., Milleret, C., Kisvarday, Z.F.: Functional selectivity of interhemispheric connections in cat visual cortex. Cerebral Cortex 19(10), 2451–2465 (2009)

    Google Scholar 

  187. Rockland, K.S., Lund, J.S.: Widespread periodic intrinsic connections in the tree shrew visual cortex. Science (1982)

    Google Scholar 

  188. Rolls, E.T.: Brain mechanisms for invariant visual recognition and learning. Behavioural Processes 33(1), 113–138 (1994)

    Google Scholar 

  189. Rolls, E.T.: Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9(4), 467–480 (1999)

    Google Scholar 

  190. Rolls, E.T., Deco, G.: Computational neuroscience of vision. Oxford University Press (2002)

    Google Scholar 

  191. Rolls, E.T., Stringer, S.M.: Invariant visual object recognition: a model, with lighting invariance. Journal of Physiology-Paris 100(1), 43–62 (2006)

    Google Scholar 

  192. Rowe, M.P., Jacobs, G.H.: Naturalistic color discriminations in polymorphic platyrrhine monkeys: Effects of stimulus luminance and duration examined with functional substitution. Visual Neuroscience 24(1), 17 (2007)

    Google Scholar 

  193. Rust, N.C., Mante, V., Simoncelli, E.P., Movshon, A.: How MT cells analyze the motion of visual patterns. Nature Neuroscience 9(11), 1421–1431 (2006)

    Google Scholar 

  194. Sabbah, S., Laria, R., Gray, S., Hawryshyn, C.: Functional diversity in the color vision of cichlid fishes. BMC Biology 8(1), 133 (2010)

    Google Scholar 

  195. Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: The uncertainty principle: group theoretic approach, possible minimizers and scale-space properties. Journal of Mathematical Imaging and Vision 26(1-2), 149–166 (2006)

    MathSciNet  Google Scholar 

  196. Saito, K.: Period mapping associated to a primitive form. Publications of the Research Institute for Mathematical Sciences 19(3), 1231–1264 (1983)

    MATH  Google Scholar 

  197. Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience 2(8), 539–550 (2001)

    Google Scholar 

  198. Schmidt, K.E., Kim, D.-S., Singer, W., Bonhoeffer, T., Löwel, S.: Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. The Journal of Neuroscience 17(14), 5480–5492 (1997)

    Google Scholar 

  199. Schrödinger, E.R.J.A.: Outline of a theory of color measurement for daylight vision. Annalen der Physik 63(397-447), 481–520 (1920)

    Google Scholar 

  200. Schummers, J., Cronin, B., Wimmer, K., Stimberg, M., Martin, R., Obermayer, K., Koerding, K., Sur, M.: Dynamics of orientation tuning in cat v1 neurons depend on location within layers and orientation maps. Frontiers in Neuroscience 1(1), 145 (2007)

    Google Scholar 

  201. Schummers, J., Mariño, J., Sur, M.: Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36(5), 969–978 (2002)

    Google Scholar 

  202. Shaw, R.E., McIntyre, M., Mace, W.M.: The Role of Symmetry in Event Perception. In: Perception: Essays in Honor of J.J. Gibson. Cornell University Press, Ithaca (1974)

    Google Scholar 

  203. Shepard, R.N.: Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin & Review 1(1), 2–28 (1994)

    Google Scholar 

  204. Skottun, B.C., Bradley, A., Sclar, G., Ohzawa, I., Freeman, R.D.: The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. Journal of Neurophysiology 57(3), 773–786 (1987)

    Google Scholar 

  205. Smith, M.A., Sommer, M.A.: Spatial and temporal scales of neuronal correlation in visual area v4. The Journal of Neuroscience 33(12), 5422–5432 (2013)

    Google Scholar 

  206. Solstad, T., Boccara, C.N., Kropff, E., Moser, M.-B., Moser, E.I.: Representation of geometric borders in the entorhinal cortex. Science 322(5909), 1865–1868 (2008)

    Google Scholar 

  207. Souriau, J.-M.: Structure des systèmes dynamiques. Dunod (1970)

    Google Scholar 

  208. Stiles, W.S.: Color vision: the approach through increment-threshold sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45(1), 100 (1959)

    Google Scholar 

  209. Tanaka, K.: Inferotemporal cortex and object vision. Annual Review of Neuroscience 19(1), 109–139 (1996)

    Google Scholar 

  210. Tanaka, K., Fukada, Y., Saito, H.A.: Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62(3), 642–656 (1989)

    Google Scholar 

  211. Taubes, C.H.: Differential geometry: bundles, connections, metrics and curvature, vol. 23. Oxford University Press (2011)

    Google Scholar 

  212. Thom, R.: Stabilité structurelle et morphogenèse: essai d’une théorie générale des modèles. Interédition (1977)

    Google Scholar 

  213. Thom, R.: Esquisse d’une sémiophysique. physique aristotéliciene et théorie des catastrophes (1988)

    Google Scholar 

  214. Thom, R., Lejeune, C., Duport, J.P.: Morphogenèse et imaginaire, vol. 8. Lettres Modernes Minard (1978)

    Google Scholar 

  215. Ting, H.K.: On the amount of information. Theory of Probability & Its Applications 7(4), 439–447 (1962)

    Google Scholar 

  216. Todd, J.T., Oomes, A.H.J., Koenderink, J.J., Kappers, A.M.L.: On the affine structure of perceptual space. Psychological Science 12(3), 191–196 (2001)

    Google Scholar 

  217. Touryan, J., Felsen, G., Dan, Y.: Spatial structure of complex cell receptive fields measured with natural images. Neuron 45(5), 781–791 (2005)

    Google Scholar 

  218. van der Waerden, B.L., Artin, E., Noether, E.: Algebra, vol. 1. Springer (1966)

    Google Scholar 

  219. Van Hooser, S.D., Heimel, A., Nelson, S.B.: Functional cell classes and functional architecture in the early visual system of a highly visual rodent. Progress in Brain Research 149, 127–145 (2005)

    Google Scholar 

  220. Varchenko, A.N.: Asymptotic Hodge structure in the vanishing cohomology. Izvestiya: Mathematics 18(3), 469–512 (1982)

    MATH  Google Scholar 

  221. Varchenko, A.N., Givental, A.B.: Mapping of periods and intersection form. Functional Analysis and Its Applications 16(2), 83–93 (1982)

    MATH  MathSciNet  Google Scholar 

  222. Vilenkin, N.Y.: Special Functions and the Theory of Group Representations, vol. 22. AMS Bookstore (1968)

    Google Scholar 

  223. Vitte, E., Derosier, C., Caritu, Y., Berthoz, A., Hasboun, D., Soulie, D.: Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study. Experimental Brain Research 112(3), 523–526 (1996)

    Google Scholar 

  224. Von der Malsburg, C., Phillips, W.A., Singer, W.: Dynamic coordination in the brain: from neurons to mind. MIT Press (2010)

    Google Scholar 

  225. Wachtler, T., Sejnowski, T.J., Albright, T.D.: Representation of color stimuli in awake macaque primary visual cortex. Neuron 37(4), 681–691 (2003)

    Google Scholar 

  226. Wallis, G., Rolls, E., Foldiak, P.: Learning invariant responses to the natural transformations of objects. In: Proceedings of 1993 International Joint Conference on Neural Networks, IJCNN 1993, vol. 2, pp. 1087–1090. IEEE (1993)

    Google Scholar 

  227. Webster, M.A.: Pattern selective adaptation in color and form perception. The Visual Neurosciences 2, 936–947 (2003)

    Google Scholar 

  228. Weinstein, A.: Lectures on symplectic manifolds, vol. (29). American Mathematical Soc. (1977)

    Google Scholar 

  229. Weinstein, A.: Poisson geometry. Differential Geometry and its Applications 9(1), 213–238 (1998)

    MathSciNet  Google Scholar 

  230. Weliky, M., Katz, L.C.: Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling. The Journal of Neuroscience 14(12), 7291–7305 (1994)

    Google Scholar 

  231. Weliky, M., Katz, L.C.: Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285(5427), 599–604 (1999)

    Google Scholar 

  232. Weyl, H.: The Classical Groups, Their Invariants and Representations. Princeton University Press (1946)

    Google Scholar 

  233. White, L.E., Fitzpatrick, D.: Vision and cortical map development. Neuron 56(2), 327–338 (2007)

    Google Scholar 

  234. Wiener, S.I., Taube, J.S.: Head Direction Cells and the Neural Mechanisms of Spatial Orientation (Bradford Books). The MIT Press (2005)

    Google Scholar 

  235. Wilson, K.G.: Renormalization group and critical phenomena. I. renormalization group and the Kadanoff scaling picture. Physical Review B 4(9), 3174 (1971)

    MATH  Google Scholar 

  236. Wilson, K.G.: Renormalization group and critical phenomena. II. phase-space cell analysis of critical behavior. Physical Review B 4(9), 3184 (1971)

    MATH  Google Scholar 

  237. Wilson, V.J., Jones, G.M.: Mammalian vestibular physiology. Plenum Press, New York (1979)

    Google Scholar 

  238. Wolf, F., Geisel, T.: Spontaneous pinwheel annihilation during visual development. Nature 395(6697), 73–78 (1998)

    Google Scholar 

  239. Wolf, F., Geisel, T.: Universality in visual cortical pattern formation. Journal of Physiology-Paris 97(2), 253–264 (2003)

    Google Scholar 

  240. Wright, E.M.: The asymptotic expansion of the generalized hypergeometric function. Journal of the London Mathematical Society 1(4), 286–293 (1935)

    Google Scholar 

  241. Wright, E.M.: The asymptotic expansion of the generalized hypergeometric function. Proceedings of the London Mathematical Society 2(1), 389–408 (1940)

    Google Scholar 

  242. Wright, E.M.: A recursion formula for the coefficients in an asymptotic expansion. In: Proc. Glasgow Math. Assoc., vol. 4, pp. 38–41. Cambridge Univ Press (1958)

    Google Scholar 

  243. Wu, S., Amari, S.-I., Nakahara, H.: Population coding and decoding in a neural field: a computational study. Neural Computation 14(5), 999–1026 (2002)

    MATH  Google Scholar 

  244. Wurtzand, R.H., Goldberg, M.E.: Activity of superior colliculus in behaving monkey. iii. cells discharging before eye movements. J. Neurophysiol. 35(4), 575–586 (1972)

    Google Scholar 

  245. Yakusheva, T.A., Shaikh, A.G., Green, A.M., Blazquez, P.M., Dickman, J.D., Angelaki, D.E.: Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54(6), 973–985 (2007)

    Google Scholar 

  246. Yang, J.N., Shevell, S.K.: Surface color perception under two illuminants: The second illuminant reduces color constancy. Journal of Vision 3(5) (2003)

    Google Scholar 

  247. Yartsev, M.M., Ulanovsky, N.: Representation of three-dimensional space in the hippocampus of flying bats. Science 340(6130), 367–372 (2013)

    Google Scholar 

  248. Yu, H., Farley, B.J., Jin, D.Z., Sur, M.: The coordinated mapping of visual space and response features in visual cortex. Neuron 47(2), 267–280 (2005)

    Google Scholar 

  249. Zahs, K.R., Stryker, M.P.: Segregation of on and off afferents to ferret visual cortex. Journal of Neurophysiology 59(5), 1410–1429 (1988)

    Google Scholar 

  250. Zhang, T., Britten, K.H.: Parietal area vip causally influences heading perception during pursuit eye movements. The Journal of Neuroscience 31(7), 2569–2575 (2011)

    Google Scholar 

  251. Zhaoping, L.: Theoretical understanding of the early visual processes by data compression and data selection. Network: Computation in Neural Systems 17(4), 301–334 (2006)

    Google Scholar 

  252. Zhuo, Y., Zhou, T.G., Rao, H.Y., Wang, J.J., Meng, M., Chen, M., Zhou, C., Chen, L.: Contributions of the visual ventral pathway to long-range apparent motion. Science 299(5605), 417–420 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bennequin, D. (2014). Remarks on Invariance in the Primary Visual Systems of Mammals. In: Citti, G., Sarti, A. (eds) Neuromathematics of Vision. Lecture Notes in Morphogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34444-2_7

Download citation

Publish with us

Policies and ethics