
ElimLin Algorithm Revisited

Nicolas T. Courtois1, Pouyan Sepehrdad2,�,
Petr Sušil2,��, and Serge Vaudenay2

1 University College London, UK
n.courtois@ucl.ac.uk

2 EPFL, Lausanne, Switzerland
{pouyan.sepehrdad,petr.susil,serge.vaudenay}@epfl.ch

Abstract. ElimLin is a simple algorithm for solving polynomial systems
of multivariate equations over small finite fields. It was initially proposed
as a single tool by Courtois to attack DES. It can reveal some hidden
linear equations existing in the ideal generated by the system. We report
a number of key theorems on ElimLin. Our main result is to characterize
ElimLin in terms of a sequence of intersections of vector spaces. It implies
that the linear space generated by ElimLin is invariant with respect to any
variable ordering during elimination and substitution. This can be seen
as surprising given the fact that it eliminates variables. On the contrary,
monomial ordering is a crucial factor in Gröbner basis algorithms such as
F4. Moreover, we prove that the result of ElimLin is invariant with respect
to any affine bijective variable change. Analyzing an overdefined dense
system of equations, we argue that to obtain more linear equations in
the succeeding iteration in ElimLin some restrictions should be satisfied.
Finally, we compare the security of LBlock and MIBS block ciphers with
respect to algebraic attacks and propose several attacks on Courtois Toy
Cipher version 2 (CTC2) with distinct parameters using ElimLin.

Keywords: block ciphers, algebraic cryptanalysis, systems of sparse
polynomial equations of low degree.

[Breaking a good cipher should require]
“as much work as solving a system of simultaneous equations

in a large number of unknowns of a complex type.”

Claude Elwood Shannon [45]

1 Introduction

Various techniques exist in cryptanalysis of symmetric ciphers. Some involve
statistical analysis and some are purely deterministic. One of the latter methods
is algebraic attack recognized as early as 1949 by Shannon [45]. Any algebraic
attack consists of two distinct stages:

� This work has been supported in part by the European Commission through the
ICT program under contract ICT-2007-216646 ECRYPT II.

�� Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 306–325, 2012.
c© International Association for Cryptologic Research 2012



ElimLin Algorithm Revisited 307

– Writing the cipher as a system of polynomial equations of low degree often
over GF(2) or GF(2k), which is feasible for any cipher [48,20,42].

– Recovering the secret key by solving such a large system of polynomial equa-
tions.

Algebraic attacks have been successful in breaking several stream ciphers (see
[1,18,11,24,19,14,23,10] for instance) and a few block ciphers such as Keeloq [37]
and GOST [15], but they are not often as successful as statistical attacks. On
the other hand, they often require low data complexity. This is not the case for
statistical attacks.

General purpose algebraic attack techniques were developed in the last few
years by Courtois, Bard, Meier, Faugère, Raddum, Semaev, Vielhaber, Dinur and
Shamir to solve these systems [16,21,20,18,11,30,31,44,47,23,24]. The problem of
solving such polynomial systems of multivariate equations is called MQ problem
and is known to be NP hard for a random system. Currently, for a random
system in which the number of equations is equal to the number of unknowns,
there exists no technique faster than an exhaustive key search which can solve
such systems. On the other hand, the equations derived from symmetric ciphers
turn out to be overdefined and sparse for most ciphers. So, they might be easier
to solve. This sparsity is coming from the fact that due to the limitations in
hardware and the need for lightweight algorithms, simple operations arise in
the definition of cryptosystems. They are also overdefined due to the non-linear
operations.

The traditional method for solving overdefined polynomial systems of equa-
tions are known to be various Gröbner basis algorithms such as Buchberger
algorithm [9], F4 and F5 [30,31] and XL [21]. The most critical drawback of the
Gröbner basis approach is the elimination step where the degree of the system
increases. This leads to an explosion in memory space and even the most current
efficient implementations of Faugère algorithm [30,31] under PolyBoRi framework
[8] or Magma [40] are not capable of handling large systems of equations effi-
ciently. On the other hand, they are faster than other methods for overdefined
dense systems or when the equations are over GF(q) where q > 2. In fact, to-
gether with SAT solvers, they are currently the most successful methods for
solving polynomial systems.

Nevertheless, due to the technical reasons mentioned above, the system of
equations extracted from symmetric ciphers turns out to be sparse. Unfortu-
nately, the Gröbner basis algorithms can not exploit this property. In such cases,
algorithms such as XSL [20], SAT solving techniques [4,27,3], Raddum-Semaev
algorithm [44] and ElimLin [16] are of interest.

In this paper, we study the elimination algorithm ElimLin that falls within
the remit of Gröbner basis algorithms, though it is conceptually much simpler
and is based on a mix of simple linear algebra and substitution. It maintains the
degree of the equations and it does not require any fixed ordering on the set of
all monomials. On the contrary, we need to work with ad-hoc monomial order-
ings to preserve the sparsity and make it run faster. This simple algorithm reveals



308 N.T. Courtois et al.

some hidden linear equations existing in the ideal generated by the system. We
show in Sec. 7 that ElimLin does not find all such linear equations.

As far as the authors are aware, no clue has been found yet which demonstrates
that ElimLin at some stage stops working. This does not mean that ElimLin can
break any system. As mentioned earlier, for a random system this problem is NP
hard and Gröbner basis algorithms behave much better for such dense random
systems. But, the equations derived from cryptosystems are often not random
(see [32] for the huge difference between a random system and the algebraic
representation of cryptographic protocols). What we mean here is that if for
some small number of rounds ElimLin performs well but then it stops working for
more rounds, we can increase the number of samples and it will become effective
again. The bottleneck is having an efficient data structure for implementing
ElimLin together with a rigorous theory behind it to anticipate its behaviour.
These two factors are currently missing in the literature.

Except two simple theorems by Bard (see Chapter 12, Section 5 of [4]), almost
nothing has been done regarding the theory behind ElimLin. As ElimLin can also
be used as a pre-processing step in any algebraic attack, building a proper theory
is vital for improving the state of the art algebraic attacks. We are going to shed
some lights on the way this ad-hoc algorithm works and the theory behind it.

In this paper, we show that the output of ElimLin is invariant with respect to
any variable ordering. This is a surprising result, i.e., while the spaces generated
are different depending on how substitution is performed, we prove that their
intersection is exactly the same. Furthermore, we prove that no affine bijective
variable change can modify the output of ElimLin. Then, we prove a theorem on
how the number of linear equations evolves in each iteration of ElimLin.

An unannounced competition is currently running for designing lightweight
cryptographic primitives. This includes several designs which have appeared in
the last few years (see [7,22,39,34,29,36,46,2,35,6]). These designs mainly com-
pete over the gate equivalent (GE) and throughput. This might not be a fair
comparison of efficiency, since they do not provide the same level of security with
respect to distinct types of attacks. In this paper, we compare the two lightweight
Feistel-based block ciphers MIBS [38] and LBlock [49] and show that with the
same number of rounds, LBlock provides a much lower level of security compared
to MIBS with respect to algebraic attacks. In fact, we attack both ciphers with
ElimLin and F4 algorithm. Finally, we provide several algebraic attacks against
Courtois Toy Cipher version 2 (CTC2) with distinct parameters using ElimLin.

In Sec. 2, we elaborate the ElimLin algorithm. Then, we remind some basic
theorems on ElimLin in Sec. 3. As our main contribution (Theorem 7), we prove
in Sec. 4 that ElimLin can be formulated as an intersection of vector spaces.
We also discuss its consequences in Sec. 4.2 and prove a theorem regarding the
evolution of linear equations in Sec. 4.3. We perform some attacks simulations
on CTC2, LBlock and MIBS block ciphers in Sec. 5.2, 5.3 and 5.4 respectively.
In Sec. 6, we compare ElimLin and F4. We mention some open problems and a
conjecture in Sec. 7 and we conclude.



ElimLin Algorithm Revisited 309

2 ElimLin Algorithm

ElimLin stands for Eliminate Linear and it is a technique for solving polynomial
systems of multivariate equations of low degree d mostly: 2, 3, or 4 over a finite
field specifically GF(2). It is also known as “inter-reduction” step in all major
algebra systems. As a single tool, it was proposed in [16] to attack DES. It broke
5-round DES. Later, it was applied to break 5-round PRESENT block cipher
[43] and to analyze the resistance of Snow 2.0 stream cipher against algebraic
attacks [17]. It is a simple but a powerful algorithm which can be applied to
any symmetric cipher and is capable of breaking their reduced versions. There
is no specific requirement for the system except that there should exist at least
one linear term, otherwise ElimLin trivially fails. The key question for such an
algorithm is to predict its behavior. Currently, very similar to most other types of
algebraic attacks such as [47,23,24], multiple parts of the algorithm are heuristic,
so it is worthwhile to prove which factors can improve its results, make it run
faster or does not have any influence on its ultimate result. This will yield a
better understanding of how ElimLin works.
ElimLin is composed of two sequential distinct stages, namely:

– Gaussian Elimination: All the linear equations in the linear span of initial
equations are found. They are the intersection between two vector spaces:
The vector space spanned by all monomials of degree 1 and the vector space
spanned by all equations.

– Substitution: Variables are iteratively eliminated in the whole system based
on linear equations until there is no linear equation left. Consequently, the
remaining system has fewer variables.

This routine is iterated until no linear equation is obtained in the linear span of
the system. See Fig. 1 for a more precise definition of the algorithm. Clearly, the
algorithm shall depend on ordering strategies to apply in step 5, 11, and 12 of
Fig. 1. We will see that it is not, i.e., the span of the resulting SL is invariant.

We observe that new linear equations are derived in each iteration of the
algorithm that did not exist in the former spans. This phenomenon is called
avalanche effect in ElimLin and is the consequence of Theorem 7. At the end,
the system is solved linearly (when SL is large enough) or ElimLin fails. If the
latter occurs, we can increase the data complexity 1 and re-run the attack.

3 State of the Art Theorems

The only theoretical analysis of ElimLin was done by Bard in [4]. He proved the
following theorem and corollary for one iteration of ElimLin:

Theorem 1 ([4]). All linear equations in the linear span of a polynomial equa-
tion system S0 are found in the linear span of linear equations derived by per-
forming the first iteration of ElimLin algorithm on the system.

1 For instance, the number of plaintext-ciphertext pairs.



310 N.T. Courtois et al.

1: Input : A system of polynomial equations S0 = {Eq01, . . . ,Eq0m0
} over GF(2).

2: Output : An updated system of equations ST and a system of linear equations SL.
3: Set SL ← ∅ and ST ← S0 and k ← 1.
4: repeat
5: Perform Gaussian elimination Gauss(.) on ST with an arbitrary ordering of equa-

tions and monomials to eliminate non-linear monomials.
6: Set SL′ ← Linear equations from Gauss(ST ).
7: Set ST ← Gauss(ST ) \ SL′ .
8: Set flag.
9: for all � ∈ SL′ in an arbitrary order do
10: if � is a trivial equation then
11: if � is unsolvable then
12: Terminate and output “No Solution”.
13: end if
14: else
15: Unset flag.
16: Let xtk be a monomial from �.
17: Substitute xtk in ST and S ′

L using �.
18: Insert � in SL.
19: k ← k + 1
20: end if
21: end for
22: until flag is set.
23: Output ST and SL.

Fig. 1. ElimLin algorithm

The following corollary (also from [4]) is the direct consequence of the above
theorem.

Corollary 2. The linear equations generated after performing the first Gaussian
elimination in ElimLin algorithm form a basis for all possible linear equations in
the linear span of the system.

This shows that any method to perform Gaussian elimination does not affect the
linear space obtained at an arbitrary iteration of ElimLin. All linear equations
derived from one method exist in the linear span of the equations cumulated
from another method. This is trivial to see.

4 Algebraic Representation of ElimLin

4.1 ElimLin as an Intersection of Vector Spaces

We also formalize ElimLin in an algebraic way. This representation is used in
proving Theorem 7. First, we define some notations.

We call an iteration a Gaussian elimination preceding a substitution; The
system of equations for ElimLin can be stored as a matrix Mα of dimension



ElimLin Algorithm Revisited 311

mα × Tα, where each mα rows represents an equation and each Tα columns
represents a monomial at iteration α. Also, rα denotes the rank of Mα. Let
nα be the number of variables at iteration α. We use a reverse lexicographical
ordering of columns during Gaussian elimination to accumulate linear equations
in the last rows of the matrix. Any arbitrary ordering can be used instead. In
fact, we use the same matrix representation as described in [4].

Let K = GF(2) and x = (x1, . . . , xn) be a set of free variables. We denote
by K[x] the ring of multivariate polynomials over K. For S ⊂ K[x], we denote
Span (S) the K-vector subspace of K[x] spanned by S. Let γ = (γ1, γ2, . . . , γn)
be a power vector in Nn. The term xγ is defined as the product xγ = xγ1

1 ×xγ2

2 ×
· · · × xγn

n . The total degree of xγ is defined as deg(xγ)
def
= γ1 + γ2 + · · ·+ γn. Let

Ideal (S) be the ideal spanned by S and Root (S) be the set of all tuples m ∈ Kn

such that f(m) = 0 for all f ∈ S. Let
Rd = Span (monomials of degree ≤ d) /Ideal

(
x2
1 − x1, x

2
2 − x2, . . . , x

2
n − xn

)

Let Sα be ST after the α-th iteration of ElimLin and S0 be the initial system.
Moreover, nα

L is the number of non-trivial linear equations in SL′ at the α-th

iteration. We denote SαL the SL after the α-th iteration. Also, Cα def
= #SαL .

Let assume that S0 has degree bounded by d. We denote by Var(f) the set
of variables xi expressed in f . Let xt1 , . . . , xtk be the sequence of eliminated
variables. We define Vk = {x1, . . . , xn}\{xt1 , . . . , xtk}. Also, let �1, �2, . . . , �k be
the sequence of linear equations as they are used during elimination (step 11 of
Fig. 1). Hence, we have xtk ∈ Var(�k) ⊆ Vk−1.

We prove the following crucial lemma which we use later to prove Theorem 7.

Lemma 3. After the α-th iteration of ElimLin, an arbitrary equation Eqαi in the
system (Sα ∪ SαL) for an arbitrary i can be represented as

Eqαi =

m0∑

t=1

βα
ti · Eq0t +

Cα
∑

t=1

�t(x) · gαti(x) (1)

where βα
ti ∈ K and gαti(x) is a polynomial in Rd−1 and Var(gαti) ⊆ Vt.

Proof. Let xt1 be one of the monomials existing in the first linear equation
�1(x) and this specific variable is going to be eliminated. Substituting xt1 in an
equation xt1 · h(x) + z(x), where h(x) has degree at most d − 1, xt1 /∈ Var(h)
and xt1 /∈ Var(z) is identical to subtracting h(x) · �1(x). Consequently, the proof
follows by induction on α. ��
Now, we prove the inverse of the above lemma.

Lemma 4. For each i and each α, there exists β′α
ti ∈ K and g′αti (x) such that

Eq0i =

mα∑

t=1

β′α
ti · Eqαt +

Cα
∑

t=1

�t(x) · g′αti (x) (2)

where g′αti (x) is a polynomial in Rd−1 and Var(g′αti ) ⊆ Vt.



312 N.T. Courtois et al.

Proof. Gaussian elimination and substitution are invertible operations. We can
use a similar induction as the previous lemma to prove the above equation. ��
In the next lemma, we prove that SαL contains all linear equations which can be
written in the form of Eq. (1).

Lemma 5. If there exists � ∈ R1 and some βt and g′′t (x) such that

�(x) =

m0∑

t=1

βt · Eq0t +
Cα
∑

t=1

�t(x) · g′′t (x) (3)

at iteration α, where g′′t (x) is a polynomial in Rd−1, then there exists ut ∈ K
and vt ∈ K such that

�(x) +

Cα
∑

t=1

ut · �t(x) =
mα∑

t=1

vt · Eqαt

So, �(x) ∈ Span (SαL).
Proof. We define uk iteratively: uk is the coefficient of xtk in

�(x) +
k−1∑

t=1

ut · �t(x)

for k = 1, . . . , Cα. So, Var(�(x)+
∑k

t=1 ut ·�t(x)) ⊆ Vk. By substituting Eq0i from
Eq. (2) in Eq. (3) and integrating ut and g′′t in g′αti , we obtain

�(x) +

Cα
∑

t=1

ut · �t(x)
︸ ︷︷ ︸

⊆V1

=

mα∑

t=1

vt · Eqαt
︸ ︷︷ ︸

⊆V1

+

Cα
∑

t=1

�t(x) · g′t(x)
︸ ︷︷ ︸

=⇒ ⊆V1

(4)

with g′t(x) ∈ Rd−1. All g
′
t(x) where t > 1 can be written as ḡt(x) + xt1 · ¯̄gt(x)

with Var(ḡt) ⊆ V1, Var(¯̄gt) ⊆ V1 and ¯̄gt(x) ∈ Rd−2. Since,

�1(x) · g′1(x) + �t(x) · g′t(x) = �1(x) · (g′1(x) + �t(x) · ¯̄gt(x))︸ ︷︷ ︸
new g′

1(x)

+�t(x)︸ ︷︷ ︸
⊆V1

· (ḡt(x) + ¯̄gt(x) · (xt1 − �1(x)))︸ ︷︷ ︸
(new g′

t(x)) ⊆V1

we can re-arrange the sum in Eq. (4) using the above representation and obtain
Var(g′t) ⊆ V1 for all t > 1. Also, xt1 only appears in �1(x) and g′1(x). So, the
coefficient of xt1 in the expansion of �1(x) · g′1(x) must be zero. In fact, we have

�1(x) · g′1(x) = (xt1 + (�1(x)− xt1)) · (ḡ1(x) + xt1 · ¯̄gt(x))
= xt1 · (¯̄g1(x) · (1 + �1(x)− xt1) + ḡ1(x)) + ḡ1(x) · (�1(x)− xt1)



ElimLin Algorithm Revisited 313

So, ḡ1(x) = ¯̄g1(x) · (xt1 − �1(x) − 1) and we deduce,

g′1(x) = ¯̄g1(x) · (�1(x) + 1)

over GF(2). But, then �1(x) · g′1(x) = 0 over R, since �1(x) · (�1(x) + 1) = 0.
Finally, we iterate and obtain

�(x) +
Cα
∑

t=1

ut · �t(x) =
mα∑

t=1

vt · Eqαt

��
From another perspective, ElimLin algorithm can be represented as in Fig. 2.
In fact, as a consequence of Lemma 3 and Lemma 5, Fig. 2 presents a unique
characterization of Span (SL) in terms of a fixed point:

1: Input : A set S0 of polynomial equations in Rd.
2: Output : A system of linear equations SL.
3: Set S̄L := ∅.
4: repeat
5: S̄L ← Span

(S0 ∪ (Rd−1 × S̄L)
) ∩R1

6: until S̄L unchanged
7: Output SL: a basis of S̄L.

Fig. 2. ElimLin algorithm from another perspective

Lemma 6. At the end of ElimLin, Span (SL) is the smallest subset S̄L of R1,
such that

S̄L = Span
(S0 ∪ (Rd−1 × S̄L)

) ∩R1

Proof. By induction, at step α we have S̄L ⊆ Span (SαL), using Lemma 5. Also,
SαL ⊆ S̄L using Lemma 3. So, S̄L = Span (SαL) at step α. Since

S̄L 
→ Span
(S0 ∪ (Rd−1 × S̄L)

) ∩R1

is increasing, we obtain the above equation. ��
ElimLin eliminates variables, thus it looks very unexpected that the number
of linear equations in each step of the algorithm is invariant with respect to
any variable ordering in the substitution step and the Gaussian elimination.
We finally prove this important invariant property. Concretely, we formalize
ElimLin as a sequence of intersection of vector spaces. Such intersection in each
iteration is between the vector space spanned by the equations and the vector
space generated by all monomials of degree 1 in the system. This implies that
if ElimLin runs for α iterations (finally succeeds or fails), it can be formalized
as a sequence of intersections of α pairs of vector spaces. These intersections of
vector spaces only depend on the vector space of the initial system.



314 N.T. Courtois et al.

Theorem 7. The following relations exist after running ElimLin on a polynomial
system of equations Q:

1. Root
(S0) = Root(ST ∪ SL)

2. There is no linear equation in Span
(ST ).

3. Span (SL) is uniquely defined by S0.
4. SL consists of linearly independent linear equations.
5. The complexity is O

(
nd+1
0 m2

0

)
, where d is the degree of the system and n0

and m0 are the initial number of variables and equations, respectively.

Proof (1). Due to Lemma 3 and Lemma 4, S0 and (ST ∪SL) are equivalent. So,
a solution of S0 is also a solution of (ST ∪ SL) and vice versa.

Proof (2). Since ElimLin stops on ST , the Gaussian reduction did not find any
linear polynomial.

Proof (3). Due to Lemma 6.

Proof (4). SL includes a basis for S̄L. So, it consists of linearly independent
equations.

Proof (5). n0 is an upper bound on #SL due to the fact that SL consists of
linearly independent linear equations. So, the number of iterations is bounded
by n0. The total number of monomials is bounded by

T0 ≤
d∑

i=0

(
n0

i

)
= O

(
nd
0

)

The complexity of Gaussian elimination is O(m2
0T0), since we have T0 columns

and m0 equations. Therefore, overall, the complexity of ElimLin is O
(
nd+1
0 m2

0

)
.
��

4.2 Affine Bijective Variable Change

In the next theorem, we prove that the result of ElimLin algorithm does not
change for any affine bijective variable change. It is an open problem to find an
appropriate non-linear variable change which improves the result of the ElimLin
algorithm.

Theorem 8. Any affine bijective variable change A : GF(2)n0 → GF(2)n0 on
a n0-variable system of equations S0 does not affect the result of ElimLin algo-
rithm, implying that the number of linear equations generated at each iteration
is invariant with respect to an affine bijective variable change.

Proof. In Lemma 6, we showed that Span (SL) is the output of the algorithm in
Fig. 2, iterating

S̄L ← Span
(S0 ∪ (Rd−1 × S̄L)

) ∩R1

We represent the composition of a polynomial f1 with respect to A by Com(f1).
We then show that there is a commutative diagram.



ElimLin Algorithm Revisited 315

S0 Com(S0)

S̄L Com(S̄L)

Com

ElimLin

Com

ElimLin

We consider two parallel executions of the algorithm in Fig. 2, one with S0 and
the other with Com(S0).

If we compose the polynomials in S0 with respect to A, in the above relation
Rd−1 remains the same. Since the transformation A is affine,

Com(Span
(S0 ∪ (Rd−1 × S̄L)

)∩R1) = Span
(
Com(S0) ∪ (Rd−1 × Com(S̄L))

)∩R1

So, at each iteration, the second execution has the result of applying Com to the
result of the first one. ��

4.3 Linear Equations Evolution

An open problem regarding ElimLin is to predict how the number of linear equa-
tions evolves in the preceding iterations. In the following theorem, we give a nec-
essary (but not sufficient) condition for a dense overdefined system of equations
to have an additional linear equation in the next iteration of ElimLin. Proving a
similar result for a sparse system is not straightforward.

Theorem 9. If we apply ElimLin to an overdefined dense system of quadratic
equations over GF(2), for nα+1

L > nα
L to hold, it is necessary to have

bα
2
− aα < nα

L <
bα
2

+ aα

where bα = 2nα − 1 and aα =

√
b2α−8nα

L

2 .

Proof. For the system to generate linear equations, it is necessary that the suffi-
cient rank condition [4] is satisfied. More clearly, we must have rα > Tα−1−nα,
otherwise no linear equations will be generated. This is true if the system of
equations is overdefined. Hence, we obtain,

nα
L = rα + nα + 1− Tα (5)

If some columns of the matrixMα are pivotless, it will shift the diagonal strand
of ones to the right. Therefore, nα

L will be more than what the above equation
expresses. Assuming the system of equations is dense, this phenomenon hap-
pens with a very low probability. Suppose the above equation is true with high
probability, then we get

nα+1
L = rα+1 + nα+1 + 1− Tα+1 (6)



316 N.T. Courtois et al.

In the (α + 1)-th iteration, the number of variables is reduced by nα
L. Thus,

nα+1 = nα − nα
L. If the system of equations is dense, in a quadratic system,

Tα =

(
nα

2

)
+ nα + 1

and so,

Tα+1 =

(
nα − nα

L

2

)
+ nα − nα

L + 1

Consequently, we have

Tα − Tα+1 = nα
L

(
nα − 1

2
(nα

L − 1)

)
(7)

Therefore, using Eq. (5), Eq. (6) and Eq. (7), we obtain,

nα+1
L = (rα+1 − rα) + (rα + nα − Tα + 1) + nα

L(− 1
2n

α
L + nα − 1

2 )

= nα
L(− 1

2n
α
L + nα + 1

2 )− (rα − rα+1)

If nα+1
L > nα

L, then nα
L(− 1

2n
α
L + nα + 1

2 )− (rα − rα+1) > nα
L and this leads to

nα
L
2 + (1− 2nα)n

α
L + 2(rα − rα+1) < 0

Δ = (1 − 2nα)
2 − 8(rα − rα+1), and if the above inequality holds, Δ should be

positive and assuming bα = 2nα − 1, then, bα −
√
Δ < 2nα

L < bα +
√
Δ.

ConsideringΔ is positive, nα >
√
2(rα − rα+1)+

1
2 . We also know that rα+1 ≤

rα−nα
L, which together lead to nα > 1

2 +
√
2nα

L. Therefore, for n
α+1
L > nα

L, it is

necessary to have nα > 1
2 +

√
2nα

L, but not visa versa. Simplifying bα −
√
Δ <

2nα
L < bα +

√
Δ and deploying rα − rα+1 ≥ nα

L results in

bα − 2aα < 2nα
L < bα + 2aα

where bα = 2nα − 1 and 2aα =
√
b2α − 8nα

L.
Notice that nα > 1

2+
√
2nα

L, which was obtained in the first stage of the proof,
has been originated from the fact that b2α − 8nα

L should be non-negative. ��

5 Attacks Simulations

In this section, we present our experimental results against CTC2, LBlock and
MIBS block ciphers. The simulations for CTC2 were run on an ordinary PC
with a 1.8 Ghz CPU and 2 GB RAM. All the other simulations were run on
an ordinary PC with a 2.8 Ghz CPU and 4 GB RAM. The amount of RAM
required by our implementation is negligible.



ElimLin Algorithm Revisited 317

In our attacks, we build a system of quadratic equations with variables rep-
resenting plaintext, ciphertext, key and state bits, which allows to express the
system of equations of high degree as quadratic equations. Afterwards, for each
sample we set the plaintext and ciphertext according to the result of the in-
put/output of the cipher. In order to test the efficiency of the algebraic attack,
we guess some bits of the key and set the key variables corresponding to the guess.
Then, we run the solver (ElimLin, F4 or SAT solver) to recover the remaining
key bits and test whether the guess was correct. Therefore, the complexity of our
algebraic attack can be bounded by 2g · C(solver), where C(solver) represents
the running time of the solver and g is the number of bits we guess. C(solver) is
represented as the the “Running Time” in all the following tables.

For a comparison with a brute force attack, we consider a fair implementation
of the cipher, which requires 10 CPU cycles per round. This implies that the
algebraic attack against t rounds of the cipher is faster than an exhaustive search
for the 1.8 Ghz and 2.8 Ghz CPU iff recovering c bits of the key is faster than
5.55 · t · 2c−31 and 3.57 · t · 2c−31 seconds respectively. This is already twice
faster than the complexity of exhaustive search. All the attacks reported in the
following tables are faster than exhaustive search with the former argument.
In fact, we consider the cipher to be broken for some number of rounds if the
algebraic attack that recovers (#key − g) key bits is faster than an exhaustive
key search over (#key − g) bits of the key.

5.1 Simulations Using F4 Algorithm under PolyBoRi Framework

The most efficient implementation of the F4 algorithm is available under Poly-
BoRi framework [8] running alone or under SAGE algebra system. PolyBoRi is a
C++ library designed to compute Gröbner basis of an ideal applied to Boolean
polynomials. A Python interface is used, surrounding the C++ core. It uses
zero-suppressed binary decision diagrams (ZDDs) [33] as a high level data struc-
ture for storing Boolean polynomials. This representation stores the monomials
more efficiently in memory and it makes the Gröbner basis computation faster
compared to other algebra systems.

We use polybori-0.8.0 for our attacks. Together with ElimLin, we also attack
LBlock and MIBS with F4 algorithm and then compare PolyBoRi’s efficiency
with our implementation of ElimLin.

5.2 Simulations on CTC2

Courtois Toy Cipher (CTC) is an SPN-based block cipher devised by Courtois
[13] as a toy cipher to evaluate algebraic attacks on smaller variants of cryp-
tosystems. It was designed to show that it is possible to break a cipher using an
ordinary PC deploying a small number of known or chosen plaintext-ciphertext
pairs.



318 N.T. Courtois et al.

Since the system of equations of well-known ciphers such as AES is often large,
it is not feasible by the current algorithms and computer capacities to solve them
in a reasonable time, therefore smaller but similar versions such as CTC can be
exploited to evaluate the resistance of ciphers against algebraic cryptanalysis.
This turns out to yield a benchmark on understanding the algebraic structure
of ciphers. Ultimately, this might lead to break of a larger system later.

CTC was not designed to be resistant against all known types of attacks like
linear and differential cryptanalysis. Nevertheless, in [25], it was attacked by
linear cryptanalysis. Subsequently, CTC Version 2 or CTC2 was proposed [12]
to resolve the flaw exists in CTC structure. CTC2 is very similar to CTC with a
few changes. It is an SPN-based network with scalable number of rounds, block
and key size. For the full specification, refer to [12]. In CT-RSA 2009, differential
and differential-linear attacks could reach up to 8 rounds of CTC2 [26], but as
stated before, the objective of the CTC designer was not applying statistical
attacks to his design. Finally, there is a cube attack on 4 rounds of one variant
of this cipher in [41].

Since block size and key size are flexible in CTC2 cipher, we break various
versions with distinct parameters (see Table 1) using ElimLin. The block size is
specified by a parameter B, which specifies the number of parallel S-boxes per
round. CTC2 S-box is 3 × 3, hence the block size is computed as 3B. We guess
some LSB bits of the key and we show that recovering the remaining is faster
than exhaustive search.

It might be possible that during the intermediate steps of ElimLin, a quadratic
equation in only key bits (possibly linear) appears. In such cases, approximately
O(#key2) samples are enough to break the system. This is due to the fact that
we can simply change the plaintext-ciphertext pair and generate a new linearly
independent equation in the key. Finally, when we have enough such equations,
we solve a system of quadratic equations in only key bits using the linearization
technique. When such phenomenon occurs, intuitively the cipher is close to be
broken but not yet. We can increase the number of samples and most often it
makes the cipher thoroughly collapse.

5.3 Simulations on LBlock

LBlock is a new lightweight Feistel-based block cipher, aimed at constrained
environments, such as RFID tags and sensor networks [49] proposed at ACNS
2011. It operates on 64-bit blocks, uses a key of 80 bits and iterates 32 rounds.
For a detailed specification of the cipher, refer to [49]. As far as the authors are
aware, there is currently no cryptanalysis results published on this cipher.

We break 8 rounds of LBlock using 6 samples deploying an ordinary PC by
ElimLin. Our results are summarized in Table 2. In the same scenario, PolyBoRi
crashes due to running out of memory.



ElimLin Algorithm Revisited 319

Table 1. CTC2 simulations using ElimLin up to 6 rounds with distinct parameters

B Nr #key g Running Time1 Running Time2 Data Attack
(in hours) (in hours) notes

16 3 48 0 0.03 5 KP ElimLin
16 3 48 0 0.12 14 KP ElimLin
64 3 192 155 0.03 1 KP ElimLin
85 3 255 210 0.04 1 KP ElimLin
16 4 48 0 0.01 2 CP ElimLin
16 4 48 0 0.05 4 CP ElimLin
40 4 120 85 0.00 1 KP ElimLin
40 4 120 85 0.84 16 KP ElimLin
48 4 144 100 0.12 4 KP ElimLin
64 4 192 148 0.05 1 KP ElimLin
64 4 192 155 2.21 5 KP ElimLin
85 4 255 220 0.29 1 KP ElimLin
85 4 255 215 0.64 1 KP ElimLin
85 4 255 220 0.26 2 KP ElimLin
85 4 255 215 0.90 3 KP ElimLin
85 4 255 210 1.33 4 KP ElimLin
16 5 48 0 3 8 CP ElimLin
40 5 120 85 0.03 2 CP ElimLin
32 6 96 60 2.5 16 CP ElimLin
40 6 120 80 1 8 CP ElimLin
64 6 192 155 2.4 4 CP ElimLin
85 6 255 210 3 2 CP ElimLin
85 6 255 220 3 16 CP ElimLin
85 6 255 210 180.5 64 CP ElimLin
128 6 384 344 4.5 2 CP ElimLin

B : Number of S-boxes per round. To obtain the block size, B is multiplied by 3.
Nr : Number of rounds
g: Number of guessed LSB of the key
Running Time1: Running time until we achieve equations only in key variables (no
other internal variables). When this is achieved, the cipher is close to be broken, but
not yet (see Sec. 5.2).
Running Time2: Attack running time for recovering (#key − g) bits of the key.
KP: Known plaintext
CP: Chosen plaintext

5.4 Simulations on MIBS

Similar to the LBlock block cipher, MIBS is also a lightweight Feistel-based
block cipher, aimed at constrained environments, such as RFID tags and sensor
networks [38]. It operates on 64-bit blocks, uses keys of 64 or 80 bits and iterates
32 rounds. For a detailed specification of the cipher, see [38].

Currently,thebestcryptanalysisresults isa linearattackreaching18-roundMIBS
with data complexity 261 and time complexity of 276 [5]. In fact, statistical attacks
often requirevery largenumberof samples.This isnotalwaysachievable inpractice.



320 N.T. Courtois et al.

Table 2. Algebraic attack complexities on reduced-round LBlock using ElimLin and
PolyBoRi

Nr #key g Running Time Data Attack
(in hours) notes

8 80 32 0.252 6 KP ElimLin
8 80 32 crashed 6 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

We break 4 and 3 rounds of MIBS80 and MIBS64 using 32 and 2 samples
deploying an ordinary PC by ElimLin. Our results are summarized in Table 3. In
2 out of 3 experiments, PolyBoRi crashes due to running out of memory. This is
the first algebraic analysis of the cipher.

The designers in [38] have evaluated the security of their cipher with respect to
algebraic attacks. They used the complexity of XSL algorithm for this evaluation,
which is not a precise measurement for evaluating resistance of a cipher against
algebraic attacks, since effectiveness of XSL is still controversial and under specu-
lation. There are better methods such as SAT solvers [3] which solve MQ problem
faster than expected due to the system being overdefined and sparse.

Let assume XSL can be precise enough to evaluate the security of a cipher
with respect to algebraic attacks. According to [20,38], the complexity of XSL
can be evaluated with the work factor. For MIBS, work factor is computed as:

WF = Γω
(
(Block Size) ·N2

r

)ω�T
r �

whereΓ is a parameterwhichdepends only on theS-box.ForMIBS,Γ = 85.56.The
value r = 21 is the number of equations the S-box can be representedwith. T = 37
is the number of monomials in that representation. ω = 2.37 is the exponent of the
Gaussian elimination complexity. The work factor for attacking 5-round MIBS is
WF = 265.65 which is worse than an exhaustive key search for MIBS64. Deploying
SAT solving techniques using MiniSAT 2.0 [28], we can break 5 rounds of MIBS64
(see Table 3). Our strategy is exactly the same as [3]. Table 3 already shows that
we can do better than 265.65 for MIBS64. We can perform a very similar attack
on MIBS80. This already shows that considering the complexity of XSL is not a
precisemeasure to evaluate the security of a cipher against algebraic cryptanalysis.
Complexity of attacking such system with XL is extremely high.

We believe that due to the similarity between the structure of MIBS and
LBlock, we can compare them with respect to algebraic attacks. As can be seen
from the table of attacks, LBlock is much weaker. This is not surprising though,
since the linear layer of LBlock is much weaker than MIBS, since it is nibble-
wise instead of bit-wise. So, we could attack twice more rounds of LBlock. Thus,
although LBlock is lighter with respect to the number of gates, but it provides
a lower level of security with respect to algebraic attacks.



ElimLin Algorithm Revisited 321

Table 3. Algebraic attack complexities on reduced-round MIBS using ElimLin, Poly-
BoRi and MiniSAT 2.0

Nr #key g Running Time Data Attack
(in hours) notes

4 80 20 0.137 32 KP ElimLin
4 80 20 crashed 32 KP PolyBoRi
5 64 16 0.395 6 KP MiniSAT 2.0
5 64 16 crashed 6 KP PolyBoRi
3 64 0 0.006 2 KP ElimLin
3 64 0 0.002 2 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

6 A Comparison between ElimLin and PolyBoRi

Gröbner basis is currently one of the most successful methods for solving polyno-
mial systemsof equations.However, it has its ownrestrictions.Themainbottleneck
of the Gröbner basis techniques is the memory requirement and therefore most of
the Gröbner basis attacks use relatively small number of samples. It is worthwhile
tomention thatElimLin is a subroutine isGröbner basis computations.But,ElimLin
algorithm as a single tool requires a large number of samples to work.

The Gröbner basis solve the system by reductions according to a pre-selected
ordering, which can lead to high degree dense polynomials. ElimLin uses the
fact that multiple samples provide an additional information to the solver, and
therefore the key might be found even if when we restrict the reduction to
degree 2.

Next, we compare the current state of the art implementation of F4 algo-
rithm PolyBoRi and our implementation of ElimLin. In the cases where ElimLin
behaves better than PolyBoRi, it does not mean that ElimLin is superior to F4
algorithm. In fact, it just means that there exists a better implementation for
ElimLin than for F4 for some particular systems of equations. F4 uses a fixed
ordering for monomials and therefore it does not preserve the sparsity in its
intermediate steps. On the other hand, our implementation of ElimLin performs
several sparsity preserving techniques by changing the ordering. This drops the
total number of monomials and makes it memory efficient.

Table 2 and Table 3 show that PolyBoRi requires too much memory and crashes
for a large number of samples. At the same time, our implementation of ElimLin
is slightly slower than PolyBoRi implementation attacking 2 samples of 3-round
MIBS64 as in Table 3. This demonstrates that our implementation of ElimLin can
be more effective than PolyBoRi and vice versa, depending on memory require-
ments of PolyBoRi. However, whenever the system is solvable by our implementa-
tion of ElimLin, our experiments revealed that PolyBoRi does not give a significant
advantage over ElimLin because the memory requirements are too high.



322 N.T. Courtois et al.

While PolyBoRimay yield a solution for a few samples, the success of ElimLin is
determined by the number of samples provided to the algorithm. The evaluation
of the number of sufficient samples in ElimLin is still an open problem.

We see that often preserving the degree by simple linear algebra techniques
can outperform the more sophisticated Gröbner basis algorithms, mainly due
to the structural properties of the system of equations of a cryptographic prim-
itive (such as sparsity). ElimLin takes advantage of such structural properties
and uncovers some hidden linear equations using multiple samples. According
to our experiments, PolyBoRi does not seem to be able to take advantage of
these structural properties as would be expected which results in higher mem-
ory requirements than would be necessary and ultimately their failure for large
systems, even though it is clearly possible for the algorithm to find the solution
in reasonable time. Finally, we need more efficient implementations and data
structures for both ElimLin and Gröbner basis algorithms.

7 Further Work and Some Conjectures

An interesting area of research is to estimate the number of linear equations
in ElimLin or anticipate how this number evolves in the succeeding iterations
or evaluate after how many iterations ElimLin finishes. Also, to anticipate how
many samples is enough to make the system collapse by ElimLin. Last but not
least, it is prominent to find a very efficient method for implementing ElimLin
and to find the most appropriate data structure to choose.

There are some evidence which illustrate that ElimLin does not reveal all
hidden linear equations in the structure of the cipher up to a specific degree. We
give an example, demonstrating such an evidence:

Assume there exists an equation in the system which can be represented as
�(x)g(x) + 1 = 0 over GF(2), where �(x) is a polynomial of degree one and g(x)
is a polynomial of degree at most d− 1. Running ElimLin on this single equation
trivially fails. But, if we multiply both sides of the equation by �(x), we obtain
�(x)g(x) + �(x) = 0. Summing these two equations, we derive �(x) = 1. This
hidden linear equation can be simply captured by the XL algorithm, but can not
be captured by ElimLin. There exist multiple other examples which demonstrate
that ElimLin does not generate all the hidden linear equations. To generate all
such linear equations, the degree-bounded Gröbner basis can be used.
For big ciphers, for example the full AES, it is also plausible that:

Conjecture 1. For each number of rounds X, there exists Y such that AES is
broken by ElimLin given Y Chosen or Known Plaintext-Ciphertext pairs.

Disproving the above conjecture leads to the statement that “AES can not be
broken by algebraic attack at degree 2”. But maybe this conjecture is true, then
the capacities of the ElimLin attack are considerable and it works for any number
of rounds X . As a consequence, if for X = 14 this Y is not too large, say less
than 264, the AES-256 will be broken faster than brute force by ElimLin at degree



ElimLin Algorithm Revisited 323

2, which is much simpler than Gröbner basis objective of breaking it at degree
3 or 4 with 1 KP.

ElimLin is a polynomial time algorithm. If it can be shown that a polyno-
mial number of samples is enough to gain a high success rate for ElimLin, this
can already be considered a breakthrough in cryptography. Unfortunately, the
correctness of this statement is not clear.

8 Conclusion

In this paper, we proved that ElimLin can be formulated in terms of a sequence of
intersections of vector spaces. We showed that different monomial orderings and
any affine bijective variable change do not influence the result of the algorithm.
We did some predictions on the evolution of linear equations in the succeeding
iterations in ElimLin. We presented multiple attacks deploying ElimLin against
CTC2, LBlock and MIBS block ciphers.

References

1. Armknecht, F., Ars, G.: Algebraic Attacks on Stream Ciphers with Gröbner Bases.
In: Gröbner Bases, Coding, and Cryptography, pp. 329–348 (2009)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

3. Bard, G., Courtois, N., Jefferson, C.: Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-
Solvers. Presented at ECRYPT Workshop Tools for Cryptanalysis (2007),
http://eprint.iacr.org/2007/024.pdf

4. Bard, G.V.: Algebraic Cryptanalysis. Springer (2009)
5. Bay, A., Nakahara Jr., J., Vaudenay, S.: Cryptanalysis of Reduced-Round MIBS

Block Cipher. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS,
vol. 6467, pp. 1–19. Springer, Heidelberg (2010)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computa-
tions with Boolean polynomials. In: Electronic Proceedings of MEGA 2007 (2007),
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf

9. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation 41(3-4), 475–511 (2006)

10. Courtois, N.T.: Higher Order Correlation Attacks, XL Algorithm and Cryptanaly-
sis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

http://eprint.iacr.org/2007/024.pdf
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf


324 N.T. Courtois et al.

11. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

12. Courtois, N.: CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited. In:
Cryptology ePrint Archive (2007), http://eprint.iacr.org/2007/152.pdf

13. Courtois, N.: How Fast can be Algebraic Attacks on Block Ciphers? In: Symmetric
Cryptography. Dagstuhl Seminar Proceedings, vol. 07021 (2007)

14. Courtois, N.: The Dark Side of Security by Obscurity - and Cloning MiFare Classic
Rail and Building Passes, Anywhere, Anytime. In: SECRYPT, pp. 331–338 (2009)

15. Courtois, N.: Algebraic Complexity Reduction and Cryptanalysis of GOST. In:
Cryptology ePrint Archive (2011), http://eprint.iacr.org/2011/626

16. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

17. Courtois, N.T., Debraize, B.: Algebraic Description and Simultaneous Linear Ap-
proximations of Addition in Snow 2.0. In: Chen, L., Ryan, M.D., Wang, G. (eds.)
ICICS 2008. LNCS, vol. 5308, pp. 328–344. Springer, Heidelberg (2008)

18. Courtois, N.T., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

19. Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical Algebraic Attacks on the
Hitag2 Stream Cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009)

20. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

21. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

22. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

23. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

24. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

25. Dunkelman, O., Keller, N.: Linear Cryptanalysis of CTC. In: Cryptology ePrint
Archive (2006), http://eprint.iacr.org/2006/250.pdf

26. Dunkelman, O., Keller, N.: Cryptanalysis of CTC2. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 226–239. Springer, Heidelberg (2009)

27. Eén, N., Sörensson, N.: MiniSat 2.0. An open-source SAT solver package,
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

28. Een, N., Sorensson, N.: Minisat - A SAT Solver with Conflict-Clause Minimization.
In: Theory and Applications of Satisfiability Testing (2005)

29. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

http://eprint.iacr.org/2007/152.pdf
http://eprint.iacr.org/2011/626
http://eprint.iacr.org/2006/250.pdf
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/


ElimLin Algorithm Revisited 325

30. Faugère, J.: A new effcient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

31. Faugère, J.: A new efficient algorithm for computing Gröbner bases without re-
duction to zero (F5). In: Symbolic and Algebraic Computation - ISSAC, pp. 75–83
(2002)

32. Fusco, G., Bach, E.: Phase transition of multivariate polynomial systems. Journal
of Mathematical Structures in Computer Science 19(1) (2009)

33. Ghasemzadeh, M.: A New Algorithm for the Quantified Satisfiability Problem,
Based on Zero-suppressed Binary Decision Diagrams and Memoization. PhD thesis,
University of Potsdam, Germany (2005)

34. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

35. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

36. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

37. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical
Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 1–18. Springer, Heidelberg (2008)

38. Izadi, M., Sadeghiyan, B., Sadeghian, S., Arabnezhad, H.: MIBS: A New
Lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009)

39. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

40. Magma, software package, http://magma.maths.usyd.edu.au/magma/
41. Mroczkowski, P., Szmidt, J.: The Cube Attack on Courtois Toy Cipher. In: Cryp-

tology ePrint Archive (2009), http://eprint.iacr.org/2009/497.pdf
42. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In:

Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

43. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

44. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations. Jour-
nal of Designs, Codes and Cryptography 49(1-3), 147–160 (2008)

45. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28 (1949)

46. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

47. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack. In: Cryptology ePrint Archive (2007), http://eprint.iacr.org/2007/413

48. Weinmann, R.: Evaluating Algebraic Attacks on the AES. Master’s thesis, Tech-
nische Universität Darmstadt (2003)

49. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/2009/497.pdf
http://eprint.iacr.org/2007/413

	ElimLin Algorithm Revisited

	Introduction
	ElimLin Algorithm
	State of the Art Theorems
	Algebraic Representation of ElimLin
	ElimLin as an Intersection of Vector Spaces
	Affine Bijective Variable Change
	Linear Equations Evolution

	Attacks Simulations
	Simulations Using F4 Algorithm under PolyBoRi Framework
	Simulations on CTC2
	Simulations on LBlock
	Simulations on MIBS

	A Comparison between ElimLin and PolyBoRi
	Further Work and Some Conjectures
	Conclusion
	References





