Skip to main content

Mining RDF Data for Property Axioms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7566))

Abstract

The Linked Data cloud grows rapidly as more and more knowledge bases become available as Linked Data. Knowledge-based applications have to rely on efficient implementations of query languages like SPARQL, in order to access the information which is contained in large datasets such as DBpedia, Freebase or one of the many domain-specific RDF repositories. However, the retrieval of specific facts from an RDF dataset is often hindered by the lack of schema knowledge, that would allow for query-time inference or the materialization of implicit facts. For example, if an RDF graph contains information about films and actors, but only Titanic starring Leonardo_DiCaprio is stated explicitly, a query for all movies Leonardo DiCaprio acted in might not yield the expected answer. Only if the two properties starring and actedIn are declared inverse by a suitable schema, the missing link between the RDF entites can be derived. In this work, we present an approach to enriching the schema of any RDF dataset with property axioms by means of statistical schema induction. The scalability of our implementation, which is based on association rule mining, as well as the quality of the automatically acquired property axioms are demonstrated by an evaluation on DBpedia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of the 20th Intl. Conference on Very Large Data Bases (VLDB), pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  2. Antonie, M.-L., Zaïane, O.R.: Mining Positive and Negative Association Rules: An Approach for Confined Rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: Proc. of the 15th Conference on Computational Statistics (COMPSTAT), pp. 395–400. Physica Verlag (2002)

    Google Scholar 

  4. David, J., Guillet, F., Briand, H.: Association rule ontology matching approach. International Journal on Semantic Web and Information Systems 3(2), 27–49 (2007)

    Article  Google Scholar 

  5. Del Vasto Terrientes, L., Moreno, A., Sánchez, D.: Discovery of Relation Axioms from the Web. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 222–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Delteil, A., Faron-Zucker, C., Dieng, R.: Learning ontologies from rdf annotations. In: Proceedings of the 2nd Workshop on Ontology Learning (OL) at the 17th International Conference on Artificial Intelligence (IJCAI). CEUR Workshop Proceedings, vol. 38. CEUR-WS.org (2001)

    Google Scholar 

  7. Fleischhacker, D., Völker, J.: Inductive Learning of Disjointness Axioms. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Fleiss, J.L.: Measuring nominal scale agreement among many rater. Psychological Bulletin 76, 378–382 (1971)

    Article  Google Scholar 

  9. Grimnes, G.A., Edwards, P., Preece, A.D.: Learning Meta-descriptions of the FOAF Network. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 152–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Intl. Journal on Semantic Web and Information Systems 5(2), 25–48 (2009)

    Article  Google Scholar 

  11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning 2006, pp. 57–67. AAAI Press (2006)

    Google Scholar 

  12. Jiang, T., Tan, A.-H.: Mining RDF Metadata for Generalized Association Rules. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 223–233. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Lausen, G., Meier, M., Schmidt, M.: Sparqling constraints for rdf. In: Proceedings of the 11th International Conference on Extending Database Technology (EDBT): Advances in Database Technology, pp. 499–509. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Lin, D., Pantel, P.: Dirt – discovery of inference rules from text. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 323–328. ACM, New York (2001)

    Chapter  Google Scholar 

  16. Lin, T., Mausam, Etzioni, O.: Identifying functional relations in web text. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1266–1276. Association for Computational Linguistics, Cambridge (2010)

    Google Scholar 

  17. Lorey, J., Abedjan, Z., Naumann, F., Böhm, C.: Rdf ontology (re-)engineering through large-scale data mining. In: International Semantic Web Conference (ISWC) (November 2011); Finalist of the Billion Triple Challenge

    Google Scholar 

  18. Morzy, M.: Efficient Mining of Dissociation Rules. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 228–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Mädche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), pp. 321–325. IOS Press (2000)

    Google Scholar 

  20. Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Nebot, V., Berlanga, R.: Mining Association Rules from Semantic Web Data. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part II. LNCS, vol. 6097, pp. 504–513. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Oleson, D., Sorokin, A., Laughlin, G.P., Hester, V., Le, J., Biewald, L.: Programmatic gold: Targeted and scalable quality assurance in crowdsourcing. In: Human Computation. AAAI Workshops, vol. WS-11-11. AAAI (2011)

    Google Scholar 

  23. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and Building Ontologies of Linked Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order horn clauses from web text. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1088–1098. ACL (October 2010)

    Google Scholar 

  25. Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future directions. Journal of Web Semantics 4(2), 124–143 (2006)

    Article  Google Scholar 

  26. Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Yu, Y., Heflin, J.: Extending Functional Dependency to Detect Abnormal Data in RDF Graphs. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 794–809. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Zhang, C., Zhang, S.: Association rule mining: models and algorithms. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischhacker, D., Völker, J., Stuckenschmidt, H. (2012). Mining RDF Data for Property Axioms. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2012. OTM 2012. Lecture Notes in Computer Science, vol 7566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33615-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33615-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33614-0

  • Online ISBN: 978-3-642-33615-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics