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Abstract. In this paper, the tracking problem for a class of uncertain
perturbed strict-feedback nonlinear systems with unknown Duhem hys-
teresis input is investigated. Different with the conventional nonlinear
systems, the existence of the unknown preceded hysteresis will affect the
system performance and bring a challenge for the controller design. To
overcome the difficulties caused by the unknown hysteresis, the Duhem
model is used to describe the hysteresis in this paper. The properties of
the Duhem model are utilized to get the explicit expression of the hys-
teresis output, which makes it possible to deal with the unknown hys-
teresis input. Following the conventional backstepping design procedure,
a dynamic surface control method in each step is used to avoid “the
explosion complexity” in the backstepping design, and the Nussbaum
function method is used to solve the time-varying coefficient problem in
the explicit expression of the Duhem model. Under the proposed control
approach, the semiglobal uniform ultimate boundedness of all the signals
in the close-loop system is guaranteed. The effectiveness of the proposed
design scheme is validated through a simulation example.
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1 Introduction

As a class of strongly nonlinear phenomena, hysteresis nonlinearities occur in nu-
merous physical systems and industrial elements, such as electromagnetic fields,
mechanical systems, and smart materials-based actuators [1–3]. Compared with
the conventional nonlinearities, non-smooth and multi-values properties of hys-
teresis limit the system performance, and the available traditional control ap-
proaches may not be effective for these systems. Therefore, the modeling and
control problems for the controlled systems with hysteresis have attracted more
attention, and the unknown hysteresis as the systems input becomes a new chal-
lenge for the control system design.
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Addressing this challenge, the hysteresis modeling methods become the
primary step for the control design. So far, hysteresis models can be simple
classified as operator-based hysteresis models, such as Preisach model,
Krasnosel’skii-Pokrovskii (KP) model, and Prandtl-Ishlinskii (PI) model etc.
[4–6], and differential equation-based hysteresis models, such as backlash-like
model, Bouc-Wen model and Duhem model etc. [7–9].

Recently, lots of new control strategies based on the above various hysteresis
model are developed to suppress the detrimental effects caused by hysteresis non-
linearities [10–12]. These control approaches can also be classified as constructing
the hysteresis inverse and without constructing the hysteresis inverse. Construct-
ing the hysteresis inverse approach is pioneered by Tao and Kokotovic [13]. The
main advantage of this approach is to cancel the negative effects caused by hys-
teresis directly, when the inverse model matches the hysteresis exactly. However,
this method is very sensitive to the model parameters and may cause a new dif-
ficulty for the stability analysis. To avoid these difficulties, another alternative
control approach without constructing the hysteresis inverse is developed in [7].
As an illustration, a robust adaptive control law was investigated for a class of
nonlinear systems with unknown backlash-like hysteresis [7]. Adaptive variable
structure control was proposed for a class of nonlinear systems preceded by PI
hysteresis in [14]. The common feature of this scheme is the hysteresis model can
be decomposed as linear component and nonlinear bounded component[15–17],
and this property can be utilized in the control design.

In this paper, the Duhem model is used to represent the hysteresis nonlin-
earities. The Duhem model can describe a class of general hysteresis shapes by
choosing different input functions. However, due to the existence of the nonlinear
input functions, it generates the difficulty for the controller design, which needs
a special new treatment. By exploring the characteristics of the Duhem model,
the explicit expression of the Duhem model can be transferred as a linear input
with time-varying coefficient, which facilitates the control design. Different with
the classical backstepping method, the dynamic surface control (DSC) method
without the inverse of the Duhem hysteresis is discussed in this paper. This
method can mitigate the effects caused by the Duhem hysteresis effectively and
avoid “the explosion complexity” coming from the backstepping by applying the
low-pass filters in the design of dynamic control laws [18]. Under the proposed
control approach, semiglobal uniform ultimate boundedness of all the signals in
the close-loop system is guaranteed. Finally, the effectiveness of the proposed
design scheme is validated through a simulation.

2 Problem Statement

Consider a class of perturbed strict-feedback nonlinear systems with unknown
hysteresis nonlinearities described as

⎧
⎨

⎩

ẋi = θifi(x̄i(t)) + gixi+1(t) + di(x(t), t)
ẋn = θnfn(x(t)) + gnw(t) + dn(x(t), t)
y = x1

(1)
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where x̄i(t) = [xi(t), ..., xi(t)]
T ∈ Ri, i = 1, ..., n are the system states, x(t) :=

x̄n(t) = [x1(t), ..., xn(t)]
T ∈ Rn. y ∈ R is the system output. gi, θi, i = 1, . . . , n

are unknown system parameters. di(x(t), t), i = 1, . . . , n denote the unknown
uncertain disturbances. fi(·), i = 1, . . . , n are known smooth functions. w(t) ∈ R
is the system input, which is also the output of the preceded hysteresis. In this
paper, the hysteresis is represented by the Duhem model in [9] as follows:

dw

dt
= α

∣
∣
∣
∣
du

dt

∣
∣
∣
∣ (λ(u)− w) +

du

dt
ψ(u) (2)

where u is the input of the hysteresis, α is a constant, and the Duhem hysteresis
model discussed in this paper satisfies three conditions[6].

Condition 1. λ(u) is piecewise smooth, monotone increasing, odd, with lim
u→∞ λ̇(u)

finite.

Condition 2. ψ(u) is piecewise continuous, even, with

lim
u→∞ψ(u) = lim

u→∞ λ̇(u) (3)

Condition 3. λ̇(u) > ψ(u) > αeαu
∫∞
u |λ̇(ζ) − ψ(ζ)|e−αζdζ for all u > 0.

Satisfying the above conditions, the Duhem model defined in (2) can be solved
explicitly as [6]

w = λ(u) + ϕ(u) (4)

where

ϕ(u) = [w0 − λ(u0)]e
−α(u−u0)sgn(u̇)

+e−αusgn(u̇)

∫ u

u0

[ψ(ζ) − λ̇(ζ)]eαζsgn(u̇)dζ

In [6], it has been proven that ϕ(u) is bounded.
Since λ(u) in Duhem model satisfies Condition 1, it is obvious that the mean

value theorem can be used for λ(u). By choosing λ(θ) = 0, λ(u) in (4) can be
expressed as follows

λ(u) = λ(u)− λ(θ) = λ̇(ϑ(u))(u − θ) (5)

where ϑ(u) = ςu+ (1− ς)θ with 0 ≤ ς ≤ 1.
Utilizing this transform based on mean value theorem, the Duhem hysteresis

output w can re-presented as

w(t) = λ̇(ϑ(u))u − λ̇(ϑ(u))θ + ϕ(u(t)) (6)

For the convenience of expression, we define the function L(t) as

L(t) = λ̇(ϑ(u(t))) (7)
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then w can be expressed as

w(t) = L(t)u(t) + S(t) (8)

where S(t) = −L(t)θ + ϕ(u(t)).
Substituting (8) into the controlled systems defined in (1), it has

⎧
⎨

⎩

ẋi = θifi(x̄i(t)) + gixi+1(t) + di(x(t), t)
ẋn = θnfn(x(t)) + gn[L(t)u(t) + S(t)] + dn(x(t), t)
y = x1

(9)

3 Adaptive DSC Design and Stability Analysis

In this section, the adaptive dynamic surface control design method and the
stability of the closed-loop system are presented.

In order to present the developed control laws, the following assumptions
regarding the systems (9) and a lemma are required.

Assumption 1. The desired trajectory vectors are continuous and available, and
[yd, ẏd, ÿd]

T ∈Ωd with known compact setΩd=
{
[yd, ẏd, ÿd]

T : y2d + ẏ2d + ÿ2d ≤ B0

}

⊂ R3, whose size B0 is a known positive constant.

Assumption 2. The signs of gi are known, and there exist unknown positive
constants gi0 and gi1 such that 0 < gi0 ≤ |gi| ≤ gi1 < ∞. Without loss of
generality, it is assumed that 0 < gi0 ≤ gi, i = 1, ..., n.

Assumption 3. The disturbances terms di(x(t), t), i = 1, . . . , n satisfy

|di(x(t), t)| ≤ biρi(x̄i(t)) (10)

where ρi(x̄i(t)) are known positive smooth functions and bi are unknown positive
constants.

Assumption 4. There exist unknown positive constants h0 and h1, such that

0 < h0 ≤ λ̇(u) ≤ h1 (11)

Remark 1. Assumption 1 is a basic requirement of dynamic surface control
method. For Assumptions 2, it is reasonable to assume the bound of the dis-
turbances terms di(x(t), t), i = 1, . . . , n. Assumption 3 is a basic condition for
control system (9) to avoid the controller singularity. It should be noted that
the values of gi0 and gi1 are not needed to be known. Assumption 4 implies that
L(t) and ϕ(u(t)) are bounded, and further means the term S(t) is bounded, we
denote it as D, where D is an unknown positive constant.
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Lemma 1. Let V (.), ζ(.) be the smooth functions defined on [0, tf ] with V (t) ≥
0, ∀t ∈ [0, tf ], and let N(.) be an ever smooth Nussbaum-type function [19]. If
the following inequalities holds:

V (t) ≤ c0 + e−c1t

∫ t

0

[G(.)N(ζ) + 1]ζ̇ec1τdτ (12)

where c0 represents some suitable constant, c1 is a positive constant, and G(.) is
a time-varying parameter which takes values in the unknown closed intervals I =
[l−, l+], with 0 �∈ I, and then V (t), ζ(t), and

∫ t

0
G(.)N(ζ)ζ̇dτ must be bounded

on [0, tf ].

3.1 Adaptive DSC Design

Due to the strong nonsmooth and multi-values properties of the hysteresis, the
conventional control approaches may not be effective for the systems preceded
by hysteresis. Besides, the system input is not obtained since the output of the
hysteresis is unknown, which brings a new challenge for the controller design. In
this section, one adaptive dynamic surface controller is investigated for a class
of nonlinear systems to explore the way handling the unknown hysteresis input.

Firstly, the following coordinate transformation are used: z1 = x1 − yd and
zi = xi − si−1, i = 2, ..., n, where si−1 are the output of a first order filters with
the input αi−1 as

μiṡi + si = αi, si(0) = αi(0), i = 1, ..., n− 1. (13)

where μi are the filter parameters, αi are the intermediate control for the ith
subsystems and their definitions will be given thereinafter.

For the dynamic surface control design, the boundary filter errors ei are de-
fined as

ei = si − αi, i = 1, ..., n− 1. (14)

Step i (1 ≤ i ≤ n− 1). For convenience, we denote e0
μ0

= −ẏd, g0 = 0. Utilizing

zi = xi − si−1 and the definitions for si and ei in (13) and (14), it has

si = ei + αi, ṡi = −ei
τi
, i = 1, ..., n− 2. (15)

żi = θifi(x̄i(t)) + gixi+1(t) + di(x(t), t) +
ei−1

τi−1

= θifi(x̄i(t)) + gi[zi+1 + αi + ei] + di(x(t), t) +
ei−1

τi−1
(16)

Choose the following Lyapunov functions as

Vi = Vi−1 +
1

2

(
1

gi
z2i +

1

γθi
θ̃2gi +

1

γbi
b̃2gi +

1

γḡi
˜̄g
2
gi

)

(17)
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where θ̃gi = θgi − θ̂gi , b̃gi = bgi − b̂gi and ˜̄ggi = ḡgi − ˆ̄ggi with θ̂gi , b̂gi and ˆ̄ggi
as the estimation of θgi = θi/gi, bgi = bi/gi and ḡgi = 1/gi, respectively. γθi , γbi
and γḡi are positive design parameters. Then we have

V̇i = V̇i−1 +
zi
gi
(θifi(x̄i(t)) + gi[zi+1 + αi + ei] + di(x(t), t) +

ei−1

τi−1
)

+
1

γθi
θ̃gi

˙̃θgi +
1

γbi
b̃gi

˙̃bgi +
1

γḡi
˜̄ggi

˙̄̃ggi

≤ V̇i−1 + zi(zi−1 + θgifi(x̄i(t)) + αi + bgiρi(x̄i(t)) tanh(
ziρi(x̄i(t))

ω
) + ḡgi

ei−1

τi−1
)

+zizi+1 − zizi−1 + ziei + 0.2785ωbgi +
1

γθi
θ̃gi

˙̃
θgi +

1

γbi
b̃gi

˙̃
bgi +

1

γḡi
˜̄ggi

˙̄̃ggi

= V̇i−1 + zi(zi−1 + θ̂gifi(x̄i(t)) + αi + b̂giρi(x̄i(t)) tanh(
ziρi(x̄i(t))

ω
) + ˆ̄ggi

ei−1

τi−1
)

+zizi+1 − zizi−1 + ziei + 0.2785ωbgi + θ̃gi(zifi(x̄i(t))−
1

γθi

˙̂
θgi)

+b̃gi(ziρi(x̄i(t)) tanh(
ziρi(x̄i(t))

ω
)− 1

γbi

˙̂
bgi) + ˜̄ggi(zi

ei−1

τi−1
− 1

γḡi

˙̄̂ggi) (18)

By choosing the adaptive virtual control αi and adaptive laws for θ̂gi , b̂gi and
ˆ̄ggi for the ith subsystem as

αi = −kizi − zi−1 − θ̂gifi(x̄i(t))

−b̂giρi(x̄i(t)) tanh(
ziρi(x̄i(t))

ω
)− ˆ̄ggi

ei−1

τi−1
(19)

˙̂
θgi = γθi(zifi(x̄i(t))−�iθ̂gi) (20)

˙̂
bgi = γbi(ziρi(x̄i(t)) tanh(

ziρi(x̄i(t))

ω
)− μib̂gi) (21)

˙̄̂ggi = γḡi(zi
ei−1

τi−1
− νiˆ̄ggi) (22)

where ki, �i, μi, νi are positive design parameters, and using the following in-
equalities

�iθ̃gi θ̂gi ≤
�i

2
(−θ̃2gi + θ2gi) (23)

μib̃gi b̂gi ≤
μi

2
(−b̃2gi + b2gi) (24)

νi˜̄ggi ˆ̄ggi ≤
νi
2
(−˜̄g

2
gi + ḡ2gi) (25)

it can be obtained
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V̇i ≤ −
i∑

j=1

kjz
2
j −

i∑

j=1

(
�1

2
θ̃2g1 +

μ1

2
b̃2g1 +

νi
2
˜̄g
2
g1)

+zizi+1 +
i∑

j=1

(zjej + 0.2785ωbgj +
�j

2
θ2gj +

μi

2
b2gj +

νi
2
ḡ2gj ) (26)

Step n. In the last step, the control law u(t) will be designed to ensure the
performance of the closed-loop system. Similarly, Considering zn = xn − sn−1

and ṡn−1 = −en−1/μn−1, it has

żn = θnfn(x(t)) + gn[L(t)u(t) + S(t)] + dn(x(t), t) +
en−1

τn−1
(27)

and the Lyapunov-Krasovskii function for the system can be chosen as

Vn = Vn−1 +
1

2

(

z2n +
1

γθn
θ̃2gn +

1

γbn
b̃2gn +

1

γḡn
˜̄g
2
gn

)

(28)

where θ̃gn = θgn − θ̂gn , b̃gn = bgn − b̂gn and ˜̄ggn = ḡgn − ˆ̄ggn with θ̂gn , b̂gn and ˆ̄ggn
as the estimation of θgn = θn, bgn = bn, ḡgn = gnD, respectively. γθn , γbn and
γḡn are positive design parameters.

Based on the expression for zn in (27), we have

V̇n = V̇n−1 + zn(θnfn(x(t)) + gn[L(t)u(t) + S(t)] + dn(x(t), t) +
en−1

τn−1
)

+
1

γθi
θ̃gn

˙̃θgn +
1

γbn
b̃gn

˙̃bgn +
1

γḡn
˜̄ggn

˙̄̃ggn

= V̇n−1 + znθnfn(x(t)) + zngnL(t)u(t) + zngnS(t) + zndn(x(t), t)

+zn
en−1

τn−1
+

1

γθn
θ̃gn

˙̃θgn +
1

γbn
b̃gn

˙̃bgn +
1

γḡn
˜̄ggn

˙̄̃ggn (29)

By using the following inequalities in [20]

zngnS(t) ≤ ḡgn |zn| ≤ ḡgnzn tanh(
zn
ω
) + 0.2785ωḡgn

zndn(x(t), t) ≤ bn |zn| ρn(x(t))
≤ bnznρn(x(t)) tanh(

znρn(x(t))

ω
) + 0.2785ωbn (30)

we have

V̇n ≤ V̇n−1 + znθnfn(x(t)) + zngnL(t)u(t) + ḡgnzn tanh(
zn
ω
)

+0.2785ωḡgn + 0.2785ωbn + bnznρn(x(t)) tanh(
znρn(x(t))

ω
)

+zn
en−1

τn−1
+

1

γθn
θ̃gn

˙̃θgn +
1

γbn
b̃gn

˙̃bgn +
1

γḡn
˜̄ggn

˙̄̃ggn
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≤ V̇n−1 + znzn−1 + znθ̂nfn(x(t)) + zngnL(t)u(t) + ˆ̄gzn tanh(
zn
ω
)

+0.2785ωḡgn + 0.2785ωbn + b̂nznρn(x(t)) tanh(
znρn(x(t))

ω
) + zn

en−1

τn−1

+θ̃gn(znfn(x(t)) −
1

γθn

˙̂
θgn) + b̃gn(znρn(x(t)) tanh(

znρn(x(t))

ω
)− 1

γbn

˙̃
bgn)

+˜̄ggn(zn tanh(
zn
ω
)− 1

γḡn

˙̄̃ggn)− znzn−1 (31)

In the last step, the adaptive virtual control u and adaptive laws for ζ, θ̂gn , b̂gn
and ˆ̄ggn for the nth subsystem can be chosen as

u = N(ζ)[knzn + zn−1 + θ̂gnfn(x(t)) + ˆ̄ggn tanh(
zn
ω
)

+b̂gnρn(x(t)) tanh(
znρn(x(t))

ω
) +

en−1

τn−1
] (32)

ζ̇ = knz
2
n + znzn−1 + znθ̂gnfn(x(t)) + ˆ̄ggnzn tanh(

zn
ω
)

+znb̂gnρn(x(t)) tanh(
znρn(x(t))

ω
) + zn

en−1

τn−1
(33)

˙̂
θgn = γθn(znfn(x(t)) −�nθ̂gn) (34)

˙̂
bgn = γbn(znρn(x(t)) tanh(

znρn(x(t))

ω
)− μnb̂gn) (35)

˙̄̂ggn = γḡn(zn tanh(
zn
ω
)− νiˆ̄ggi) (36)

where ki, �i, μi, νi are positive design parameters.
By using the following inequalities

�nθ̃gn θ̂gn ≤ �n

2
(−θ̃2gn + θ2gn) (37)

μnb̃gn b̂gn ≤ μn

2
(−b̃2gn + b2gn) (38)

νn˜̄ggn ˆ̄ggn ≤ νn
2
(−˜̄g

2
gn + ḡ2gn) (39)

it can be obtained

V̇n ≤ −
n∑

j=1

kjz
2
j −

n∑

j=1

(
�j

2
θ̃2gj +

μj

2
b̃2gj +

νj
2
˜̄g
2
gj )
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+[gnL(t)N(ζ) + 1]ζ̇ + 0.2785ωḡgn +

n−1∑

j=1

(zjej)

+

n∑

j=1

(0.2785ωbgj +
�j

2
θ2gj +

μi

2
b2gj +

νi
2
ḡ2gj ) (40)

3.2 Stability Analysis

The semiglobal boundedness of all of the signals in the closed-loop system will
be given.

Based on (15) and (19), it can be obtained that

ėi = ṡi − α̇i

= −ei
τi

+ (
∂αi

∂zi
żi +

∂αi

∂θ̂gi

˙̂
θgi +

∂αi

∂b̂gi

˙̂
bgi +

∂αi

∂ˆ̄ggi

˙̄̂ggi)

= −ei
τi

+Bi(z1, ..., zi, θ̂g1 , ..., θ̂gi , b̂g1 , ..., b̂gi , ˆ̄gg1 , ..., ĝgi , yd, ẏd, ÿd) (41)

where Bi(z1, ..., zi, θ̂g1 , ..., θ̂gi , b̂g1 , ..., b̂gi , ˆ̄gg1 , ..., ĝgi , yd, ẏd, ÿd) =
∂αi

∂zi
żi+

∂αi

∂θ̂gi

˙̂
θgi+

∂αi

∂b̂gi

˙̂
bgi +

∂αi

∂ˆ̄ggi

˙̄̂ggi , which are continuous functions, i = 1, ..., n− 1.

Thus, it follows

eiė ≤ −e
2
i

τi
+
∣
∣
∣eiBi(z1, ..., zi, θ̂g1 , ..., θ̂gi , b̂g1 , ..., b̂gi , ˆ̄gg1 , ..., ĝgi , yd, ẏd, ÿd)

∣
∣
∣ (42)

Denote Ωi := {[z1, ..., zi, θ̂g1 , ..., θ̂gi , b̂g1 , ..., b̂gi , ˆ̄gg1 , ..., ĝgi ] : Vn+
n−1∑

i=1

e2i ≤ 2P0} ⊂
R4i as the compact set of the initial conditions with P0 a positive constant.
Combining Assumption 1, for any B0 > 0, P0 > 0, the set Ωd and Ωi are compact
in R4 and R4i. Thus, Bi(z1, ..., zi, θ̂g1 , ..., θ̂gi , b̂g1 , ..., b̂gi , ˆ̄gg1 , ..., ĝgi , yd, ẏd, ÿd) has
a maximum value Mi, i = 1, ..., n− 1 on Ωd ×Ωi.

Theorem 1. Under Assumptions 1-4, considering the closed-loop system (1) with
unknown Duhem hysteresis (2), the designed controller and adaptive control
laws are given in (32)-(36), then for any initial conditions Ωi, there exist control
feedback gains ki and filter parameters μi, such that the closed-loop control
system is semiglobally stable in the sense that all signals in the closed-loop
remain ultimately bounded.

The proof is omitted due to the space limit.

4 Simulation Studies

In this section,a nonlinear system (43) with Duhem hysteresis is used to illustrate
the effectiveness of the proposed scheme in Section III.

{
ẋ = θf(x(t)) + gw(t) + d(x(t), t)
y = x

(43)
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Fig. 1. Tracking error of the closed-loop system
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Fig. 2. Control signal u and the Duhem hysteresis output w

where θ = 1, g = 1, f(x(t)) = 1−e−x

1+e−x , d(x(t), t) = e−0.5x. Correspondingly, b =

1, ρ(x) = e−0.5x. For the Duhem model, λ(u) = tanh(u) + 0.1u and ψ(u) =
λ̇(u)(1 − 0.58e−|u|). The objective is make the output y of system (43) to track
the desired trajectory xd(t) = 5 sin(2t) + cos(3.2t).

In this simulation, the Nussbaum function is chosen asN(ζ) = eζ
2

cos(πζ2 ), ω =

0.01.The initial parameters for update laws are chosen as θ̂g1(0) = 0, b̂g1(0) =
0, ˆ̄gg1(0) = 0, ζ(0) = 0, and the initial condition of system is chosen as x(0) = 0.5.
The control parameters are chosen as k = 15, γθ1 = 5, γb1 = 8, γḡ1 = 10. The
filter parameter and σ-modification parameters is defined as τ1 = 0.01 and
�1 = μ1 = ν1 = 0.1 respectively.
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The simulation results are shown in Figs. 1-2. In Fig. 1, the tracking error
is shown and Fig. 2 shows the control input u. From the results, the proposed
control scheme can overcome the effects of the hysteresis and ensure the bound-
edness of the closed-loop system.

5 Conclusion

In this paper, an adaptive dynamic surface controller for a class of uncertain per-
turbed strict-feedback nonlinear systems with unknown Duhem hysteresis input
is developed. By utilizing DSC technique, “the explosion complexity” in the clas-
sical backstepping design method is avoided. To avoid the difficulties of the last
recursive step caused by the unknown Duhem hysteresis, the unknown Duhem
model is decomposed as nonlinear smooth component and nonlinear bounded
component. By using mean value theorem, the nonlinear smooth component
can be transformed as an unknown time-varying coefficient form, which makes
it possible to solve the control design difficulty. Semiglobal uniform ultimate
boundedness of all the signals in the close-loop system is guaranteed under the
proposed control approach. Finally, simulation studies are given to demonstrate
the effectiveness of the proposed design scheme.
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