Skip to main content

A Rigorous Application of the Method of Vertical Lines to Coupled Systems in Finite Element Analysis

  • Chapter
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 120))

Abstract

In this essay the rigorous application of the method of vertical lines, i.e. performing the successive steps of spatial and temporal discretization is investigated for dynamical and quasi-statical systems. A particular focus lies in the field of solid mechanics where constitutive models of evolutionary-type are of basic interest. Various coupled systems, i.e. thermo-mechanical, electro-thermal or electro-thermo-mechanical coupled problems are investigated in view of the structure of their resulting equations, commonly, leading to systems of ordinary differential equations or systems of differential-algebraic equations after the spatial discretization step. For the case of a thermo-mechanical and an electro-thermal problem stiffly accurate diagonally-implicit Runge-Kutta methods are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM Journal on Numerical Analysis 14, 1006–1021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Computing and Visualization in Science 13, 331–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diebels, S., Ellsiepen, P., Ehlers, W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phases model. Technische Mechanik 19, 19–27 (1999)

    Google Scholar 

  4. Eckert, S., Baaser, H., Gross, D., Scherf, O.: A BDF2 integration method with stepsize control for elastoplasticity. Computational Mechanics 34(5), 377–386 (2004)

    Article  MATH  Google Scholar 

  5. Eidel, B., Kuhn, C.: Order reduction in computational inelasticity: Why it happens and how to overcome it – the ODE-case of viscoelasticity. International Journal for Numerical Methods in Engineering 87(11), 1046–1073 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Doctoral thesis, Institute of Mechanics II, University of Stuttgart, report No. II-3 (1999)

    Google Scholar 

  7. Ellsiepen, P., Hartmann, S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. International Journal for Numerical Methods in Engineering 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  8. Fritzen, P.: Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie. Doctoral thesis, Department of Mathematics, University of Darmstadt (1997)

    Google Scholar 

  9. Gear, C.W.: Maintaining solution invariants in the numerical solution of ODEs. SIAM Journal on Scientific and Statistical Computing 7(3), 734–743 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Großmann, C., Roos, H.: Numerik partieller Differentialgleichungen. Teubner Verlag, Stuttgart (1994)

    Book  MATH  Google Scholar 

  11. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic systems by Runge-Kutta Methods. Springer, Berlin (1989)

    MATH  Google Scholar 

  13. Hamkar, A.W., Hartmann, S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. Journal of Theoretical and Applied Mechanics 50, 3–22 (2012)

    Google Scholar 

  14. Hartmann, S.: Zur Berechnung inelastischer Festkörper mit der Methode der finiten Elemente. In: Hartmann, S., Haupt, P., Ulbricht, V. (eds.) Modellierung und Identifikation, Gesamthochschul-Bibliothek, Kassel, pp. 119–130 (1998)

    Google Scholar 

  15. Hartmann, S.: Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Computer Methods in Applied Mechanics and Engineering 191(13-14), 1439–1470 (2002)

    Article  MATH  Google Scholar 

  16. Hartmann, S.: A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Computational Mechanics 36(2), 100–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartmann, S., Bier, W.: High-order time integration applied to metal powder plasticity. International Journal of Plasticity 24(1), 17–54 (2008)

    Article  MATH  Google Scholar 

  18. Hartmann, S., Hamkar, A.W.: Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity. Computer Methods in Applied Mechanics and Engineering 199(23-24), 1455–1470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartmann, S., Wensch, J.: Finite element analysis of viscoelastic structures using Rosenbrock-type methods. Computational Mechanics 40, 383–398 (2007)

    Article  MATH  Google Scholar 

  20. Hartmann, S., Quint, K.J., Arnold, M.: On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Computer Methods in Applied Mechanics and Engineering 198, 178–193 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartmann, S., Quint, K.J., Hamkar, A.W.: Displacement control in time-adaptive non-linear finite-element analysis. Journal of Applied Mathematics and Mechanics 88(5), 342–364 (2008b)

    MathSciNet  MATH  Google Scholar 

  22. Hartmann, S., Kuhl, D., Quint, K.J.: Time-adaptive computation of thermoviscoplastic structures. In: Steinhoff, K., Maier, H.J., Biermann, D. (eds.) Functionally Graded Materials in Industrial Mass Production, ch. 3.1, pp. 269–282. Verlag Wissenschaftliche Scripten, Auerbach (2009)

    Google Scholar 

  23. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  24. Hoyer, W., Schmidt, J.W.: Newton-type decomposition methods for equations arising in network analysis. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 64, 397–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hughes, T.J.R.: The Finite Element Method. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  26. Lang, J.: Adaptive multilevel solution of nonlinear parabolic PDE systems. Theory, Algorithm, and Applications. Springer, Berlin (2000)

    Google Scholar 

  27. Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. International Journal of Plasticity 16, 469–494 (2000)

    Article  MATH  Google Scholar 

  28. Munoz, S., Anselmi-Tamburini, U.: Temperature and stress fields evolution during spark plasma sintering processes. Journal of Material Science 45, 6528–6539 (2010)

    Article  Google Scholar 

  29. Quint, K.J., Hartmann, S., Rothe, S., Saba, N., Steinhoff, K.: Experimental validation of high-order time-integration for non-linear heat transfer problems. Computational Mechanics 48, 81–96 (2011)

    Article  MATH  Google Scholar 

  30. Rabbat, N.B.G., Sangiovanni-Vincentelli, A.L., Hsieh, H.Y.: A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain. IEEE Transactions on Circuits and Systems 26, 733–740 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rang, J., Angermann, L.: New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numerical Mathematics 45(4), 761–787 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rothe, S., Hamkar, A.W., Quint, K.J., Hartmann, S.: Comparison of diagonal-implicit, linear-implicit and half-explicit Runge-Kutta methods in non-linear finite element analyses. Archive of Applied Mechanics (published online, 2012)

    Google Scholar 

  33. Scherf, O.: Numerische Simulation inelastischer Körper. Fortschritt-Berichte VDI, Reihe 20 (Rechnerunterstützte Verfahren) Nr.321, VDI-Verlag, Düsseldorf (2000)

    Google Scholar 

  34. Shi, P., Babuska, I.: Analysis and computation of a cyclic plasticity model by aid of Ddassl. Computational Mechanics 19, 380–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  36. Song, Y., Li, Y., Zhou, Z., Lai, Y., Ye, Y.: A multi-field coupled fem model for one-step-forming process of spark plasma sintering considering local densification of powder material. Journal of Material Science 46, 5645–5656 (2011)

    Article  Google Scholar 

  37. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. In: Handbuch der Physik III/3. Springer, Berlin (1965)

    Google Scholar 

  38. Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., Van der Biest, O.: Modelling of the temperature distribution during field assisted sintering. Acta Materialia 53, 4379–4388 (2005)

    Article  Google Scholar 

  39. Verwer, J.: Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis. Pitman Research Notes in Mathematics, vol. 140, pp. 220–237. Longman Scientific and Technical, Essex (1986)

    Google Scholar 

  40. Wittekindt, J.: Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung inelastischen Werkstoffverhaltens. Doctoral thesis, Department of Mathematics, University of Darmstadt (1991)

    Google Scholar 

  41. Zavaliangos, A., Zhang, J., Krammer, M., Groza, J.R.: Temperature evolution during field activated sintering. Materials Science and Engineering 379, 218–228 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, S., Rothe, S. (2013). A Rigorous Application of the Method of Vertical Lines to Coupled Systems in Finite Element Analysis. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics