Skip to main content

Advanced Coincidence Processing of 3D Laser Radar Data

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Abstract

Data collected by 3D Laser Radar (Lidar) systems, which utilize arrays of avalanche photo-diode detectors operating in either Linear or Geiger mode, may include a large number of false detector counts or noise from temporal and spatial clutter. We present an improved algorithm for noise removal and signal detection, called Multiple-Peak Spatial Coincidence Processing (MPSCP). Field data, collected using an airborne Lidar sensor in support of the 2010 Haiti earthquake operations, were used to test the MPSCP algorithm against current state-of-the-art, Maximum A-posteriori Coincidence Processing (MAPCP). Qualitative and quantitative results are presented to determine how well each algorithm removes image noise while preserving signal and reconstructing the best estimate of the underlying 3D scene. The MPSCP algorithm is shown to have 9x improvement in signal-to-noise ratio, a 2-3x improvement in angular and range resolution, a 21% improvement in ground detection and a 5.9x improvement in computational efficiency compared to MAPCP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gschwendtner, A.G., Keicher, W.E.: Development of Coherent Laser Radar at Lincoln Laboratory. Linc. Lab. J. 12(2), 383–396 (2000)

    Google Scholar 

  2. Marino, R.M., Stephens, T., Hatch, R.E., McLaughlin, J.L., Mooney, J.G., O’Brien, M.E., Rowe, G.S., Adams, J.S., Skelly, L., Knowlton, R.C., Forman, S.E., Davis, W.R.: A Compact 3D Imaging Laser Radar System Using Geiger-Mode APD Arrays: System and Measurements. In: SPIE, vol. 5086, pp. 1–15 (2003)

    Google Scholar 

  3. Albota, M.A., Aull, B.F., Fouche, D.G., Heinrichs, R.M., Kocher, D.G., Marino, R.M., Mooney, J.G., Newbury, N.R., O’Brien, M.E., Player, B.E., Willard, B.C., Zayhowski, J.J.: Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays. Lincoln Laboratory Journal 13(2), 351–370 (2002)

    Google Scholar 

  4. Zayhowski, J.J.: Passively Q-Switched Microchip Lasers and Applications. Rev. Laser Eng. 29(12), 841–846 (1988)

    Google Scholar 

  5. Zayhowski, J.J.: Microchip Lasers. Lincoln Laboratory Journal 3(3), 427–446 (1990)

    Google Scholar 

  6. Heinrichs, R.M., Aull, B.F., Marino, R.M., Fouche, D.G., McIntosh, A.K., Zayhowski, J.J., Stephens, T., O’Brien, M.E., Albota, M.A.: Three-Dimensional Laser Radar with APD Arrays. In: SPIE, vol. 4377, pp. 106–117 (2001)

    Google Scholar 

  7. Albota, M.A., Heinrichs, R.M., Kocher, D.G., Fouche, D.G., Player, B.E., O’Brien, M.E., Aull, B.F., Zayhowski, J.J., Mooney, J., Willard, B.C., Carlson, R.R.: Three-Dimensional Imaging Laser Radar with a Photon-Counting Avalanche Photodiode Array and Microchip Laser. Appl. Opt. 41(36), 7671–7678

    Google Scholar 

  8. Aull, B.F., Loomis, A.H., Young, D.J., Heinrichs, R.M., Felton, B.J., Daniels, P.J., Landers, D.J.: Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging. Linc. Laboratory Journal 13(2), 335–350 (2002)

    Google Scholar 

  9. McIntosh, K.A., Donnelly, J.P., Oakley, D.C., Napoleone, A., Calawa, S.D., Mahoney, L.J., Molvar, K.M., Duerr, E.K., Groves, S.H., Shaver, D.C.: InGaAsP/InP Avalanche Photodiodes for Photon Counting at 1.06 μm. Appl. Phys. Lett. 81, 2505–2507 (2002)

    Article  Google Scholar 

  10. Fouche, D.G.: Detection and False-Alarm Probabilities for Laser Radars That Use Geiger-Mode Detectors. Appl. Opt. 42(27), 5388–5398

    Google Scholar 

  11. Stevens, J.R., Lopez, N.A., Burton, R.R.: Quantitative Data Quality Metrics for 3D Laser Radar Systems. In: SPIE Proceedings, vol. 8037 (2010)

    Google Scholar 

  12. http://www.ll.mit.edu/publications/technotes/TechNote_ALIRT.pdf

  13. Karney, C.F.F.: Transverse Mercator with an accuracy of a few nanometers. Journal of Geodesy 85(8), 475–485 (2011)

    Article  Google Scholar 

  14. Besl, P., McKay, N.: A method of registration of 3-D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 12(2), 239–256 (1992)

    Article  Google Scholar 

  15. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int’l Jour. Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vasile, A.N. et al. (2012). Advanced Coincidence Processing of 3D Laser Radar Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33179-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33179-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33178-7

  • Online ISBN: 978-3-642-33179-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics