Skip to main content

Classifying Plant Leaves from Their Margins Using Dynamic Time Warping

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7517))

Abstract

Most plant species have unique leaves which differ from each other by characteristics such as the shape, colour, texture and the margin. Details of the leaf margin are an important feature in comparative plant biology, although they have largely overlooked in automated methods of classification. This paper presents a new method for classifying plants according to species, using only the leaf margins. This is achieved by utilizing the dynamic time warping (DTW) algorithm. A margin signature is extracted and the leaf’s insertion point and apex are located. Using these as start points, the signatures are then compared using a version of the DTW algorithm. A classification accuracy of over 90% is attained on a dataset of 100 different species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backes, A.R., Bruno, O.M.: Plant Leaf Identification Using Multi-scale Fractal Dimension. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 143–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Casanova, D., de Mesquita Sá Junior, J.J., Bruno, O.M.: Plant leaf identification using Gabor wavelets. International Journal of Imaging Systems and Technology 19, 236–243 (2009)

    Article  Google Scholar 

  3. Clark, J.Y.: Plant identification from characters and measurements using artificial neural networks. In: MacLeod, N. (ed.) Automated Taxon Identification in Systematics: Theory, Approaches and Applications, pp. 207–224. CRC (2007)

    Google Scholar 

  4. Clark, J.Y.: Neural networks and cluster analysis for unsupervised classification of cultivated species of Tilia (Malvaceae). Botanical Journal of the Linnean Society 159, 300–314 (2009)

    Article  Google Scholar 

  5. Cope, J.S., Remagnino, P., Barman, S., Wilkin, P.: Plant Texture Classification Using Gabor Co-occurrences. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6454, pp. 669–677. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV 2004, pp. 1–22 (2004)

    Google Scholar 

  7. Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, J.D., Wilf, P., Wing, S.L.: Manual of Leaf Architecture. Cornell University Press (2009)

    Google Scholar 

  8. Hearn, D.J.: Shape analysis for the automated identification of plants from images of leaves. Taxon 58, 934–954 (2009)

    Google Scholar 

  9. Jensen, R.J., Ciofani, K.M., Miramontes, L.C.: Lines, outlines, and landmarks: Morphometric analyses of leaves of Acer rubrum, Acer Saccharinum (Aceraceae) and their Hybrid. Taxon 51(3), 475–492 (2002)

    Google Scholar 

  10. McLellan, T., Endler, J.A.: The relative success of some methods for measuring and describing the shape of complex objects. Systematic Biology 47, 264–281 (1998)

    Article  Google Scholar 

  11. Pauwels, E.J., de Zeeum, P.M., Ranguelova, E.B.: Computer-assisted tree taxonomy by automated image recognition. Engineering Applications of Artificial Intelligence 22(1), 26–31 (2009)

    Article  Google Scholar 

  12. Plotze, R.D., Falvo, M., Padua, J.G., Bernacci, L.C., Vieira, M.L.C., Oliveira, G.C.X., Martinez, O.: Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: A study with Passiflora (Passifloraceae). Canadian Journal of Botany 83(3), 287–301 (2005)

    Article  Google Scholar 

  13. Royer, D.L., Wilf, P.: Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences 167(1), 11–18 (2006)

    Article  Google Scholar 

  14. Royer, D.L., Wilf, P., Janesko, D.A., Kowalski, E.A., Dilcher, D.L.: Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92(7), 1141–1151 (2005)

    Article  Google Scholar 

  15. Rumpunen, K., Bartish, I.V.: Comparison of differentiation estimates based on morphometric and molecular data, exemplified by various leaf shape descriptors and RAPDs in the genus Chaenomeles. Taxon 51, 69–82 (2002)

    Article  Google Scholar 

  16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  17. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11(5), 561–580 (2007)

    Google Scholar 

  18. Sempena, S., Maulidevi, N.U., Aryan, P.R.: Human action recognition using dynamic time warping. In: International Conference on Electrical Engineering and Informatics. IEEE (2011)

    Google Scholar 

  19. Turkan, M., Dulek, B., Onaran, I., Cetin, A.: Human face detection in video using edge projections. In: Visual Information Processing. SPIE (2006)

    Google Scholar 

  20. Wang, Z., Chi, Z., Dagan, F.: Shape based leaf image retrieval. Vision, Image And Signal Processing 150, 34–43 (2003)

    Article  Google Scholar 

  21. Ye, L., Keogh, E.: Time series shapelets: A new primitive for data mining. In: IEEE International Conference on Knowledge Discovery and Data Mining, pp. 947–956. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cope, J.S., Remagnino, P. (2012). Classifying Plant Leaves from Their Margins Using Dynamic Time Warping. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33140-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33139-8

  • Online ISBN: 978-3-642-33140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics